Skip to main content
Log in

Vibrational spectroscopic, structural, linear and third-order nonlinear optical properties of isoniazid-vanillin hybrid

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The isoniazid-vanillin hybrid (IVH), a Schiff base compound is synthesized and its vibrational spectral properties, structural, linear and third-order nonlinear optical (TNLO) characteristics are studied. IVH is examined by 1H and 13C NMR, FT-IR and mass spectroscopic techniques. Solvent dependent TNLO properties are studied by Z–scan technique for which a 5 mW power CW diode laser with 650 nm wavelength is used. The order of nonlinear refractive index (n2) and nonlinear absorption coefficient (β) is measured to be 10−7 cm2/W and 10−3 cm/W, respectively. The sample exhibits both positive and negative nonlinear absorption coefficient owing to the phenomenon of saturable and reverse saturable absorption, as well as negative nonlinear index of refraction as a result of self-defocusing. Self-defocusing is the result of thermal nonlinearity owing to the continuous absorption of light source. The real and imaginary component of the TNLO susceptibility of the sample is found to be the order of 10−7 esu. The order of TNLO susceptibility (χ(3)) of IVH in polar solvents is measured to be 10−7 esu. The effect of solvent spectral features on χ(3) is also discussed. The results show that, the organic compound IVH is a promising candidate for applications in nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S Dhanuskodi, T C SabariGirisun and G Bhagavannarayana Chem. Phys. 126 463 (2011)

    CAS  Google Scholar 

  2. H Motiei, A Jafari and R Naderali Opt. Laser Technol. 88 68 (2017)

    Article  ADS  CAS  Google Scholar 

  3. V G Sreeja, G Vinitha and R Reshmi Mater. 66 460 (2017)

    CAS  Google Scholar 

  4. S Jeyaram Phys. Lett. 739 137037 (2020)

    CAS  Google Scholar 

  5. N Sudha Jeyaram Opt. Mater. 131 112668 (2022)

    Article  CAS  Google Scholar 

  6. Sana Khan Chem. Commun. 146 110079 (2022)

    CAS  Google Scholar 

  7. M Saravanakumar, J Chandrasekaran and M Krishnakumar Phys. Chem. 291 126712 (2022)

    CAS  Google Scholar 

  8. S P Ramteke, G G Muley, M I Baig, A Ibrahim, M Aslam Manthrammel, Khursheed Muzammil, Mohd. Shkir and Mohd Anis Inorg. Chem. Commun. 140 109484 (2022)

  9. S P Ramteke and S Kalainathan Algarni Optik 201 165509 (2020)

    Google Scholar 

  10. G S He, G S Xu, P N Prasad and B A Reinhardt Lett. 20 435 (1995)

    CAS  Google Scholar 

  11. S Zongo, A Kerasidou, B Sone, A Diallo, P Mthunzi, K Illiopulos and M Nkosi Surf. Sci. 340 72 (2015)

    Article  ADS  CAS  Google Scholar 

  12. Q Gong, Z Xia, Y H Zou and Y Li Phys. B 54 181 (1992)

    Google Scholar 

  13. K N Bhat, K J Chang, M Aggarwal and W S Wang Chem. I Phys. 44 261 (1996)

    CAS  Google Scholar 

  14. S Maza, C Kijatkin, Z Bouhidel, S Pillet, D Schaniel, M Imlau, B Guillot, A Cherouana and E B Bendeif J. Mol. Struc. 1219 128492 (2020)

    Article  CAS  Google Scholar 

  15. W Yu, J Jia and J Gao Phys. Lett. 624 47 (2015)

    CAS  Google Scholar 

  16. Beata Derkowska-Zielinska and Magdalena Barwiolek Laser Technol. 124 105968 (2020)

    Article  CAS  Google Scholar 

  17. N R Bader J. Chem. 3 660 (2010)

  18. S Jeyaram and T Geethakrishnan J. Fluoresc. 30 1161 (2020)

    Article  Google Scholar 

  19. N Sudha J. Fluoresc. 32 1471 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. B Anusha and S Jeyaram J. Opt. (2023)https://doi.org/10.1007/s12596-023-01217-7

    Article  Google Scholar 

  21. S Jeyaram J. Fluoresc. 31 1637 (2021)

  22. S Jeyaram J. Fluoresc. 31 1895 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. M J Weber Eng. 17 463 (1978)

    CAS  Google Scholar 

  24. M J Moran J. Quant. Elect. 11 259 (1975)

    Article  ADS  Google Scholar 

  25. S R Friberg, P W Smith and IEEE, J. Quant. Elect. 23 2089 (1987)

    Article  ADS  Google Scholar 

  26. R Adair J. Opt. Soc. Am. B 4 875 (1987)

    Article  ADS  CAS  Google Scholar 

  27. A Owyoung IEEE J. Quant. Elect. 9 1064 (1973)

  28. M Sheik-Bahae, A A Said and T Wei J. Quant. Elect. 26 760 (1990)

    Article  ADS  CAS  Google Scholar 

  29. RamyaRajanMeethale Pallolathil, Ramaswamy Rathikha, Rajedran Nithyabalaji and Rajendran Sribala J. Mol. Struc. 1242 130683 (2021)

    Article  Google Scholar 

  30. S Jeyaram and T Geethakrishnan Opt. Laser Technol. 89 179 (2017)

    Article  ADS  CAS  Google Scholar 

  31. M Jayendran and S Ponnan Chim. Acta 495 118968 (2019)

    CAS  Google Scholar 

  32. A M Jassem and Q M A Hassan Mater. 122 111750 (2021)

    CAS  Google Scholar 

  33. Z Li, F Gao, Z Xiao, X Wu, J Zuo and Y Song Opt. Laser Technol. 103 42 (2018)

  34. Mohd. Shkir, Z R Khan, Mohd. Anis, S S Shaikh and S AlFaify Chi. J. Phys. 63 51 (2020)

  35. Mohd. Shkir, Mohd Anis, S Shafik, M Aslam Manthrammel, M A Sayeed, Mohamed S Hamdy and S AlFaify Physica E Low Dimens. Syst. Nanostruct. 118 113955 (2020)

  36. Mohd Anis, Mohd. Shkir, M I Baig, S P Ramteke, G G Muley, S AlFaify and H A Ghramh J. Mol. Struc. 1170 151 (2018)

  37. V Ganesh, Mohd. Shkir, Mohd Anis and S AlFaify Mater. Res. Express 6 086439 (2019)

  38. S AlFaify, Mohd. Shkir, V Ganesh, Mohd Anis and I S Yahia App. Phys. B 124 196 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sudha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudha, N., Surendran, R. & Jeyaram, S. Vibrational spectroscopic, structural, linear and third-order nonlinear optical properties of isoniazid-vanillin hybrid. Indian J Phys 98, 1453–1462 (2024). https://doi.org/10.1007/s12648-023-02869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02869-8

Keywords

Navigation