Skip to main content
Log in

Linear Quadratic Leader-Follower Stochastic Differential Games: Closed-Loop Solvability

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, a leader-follower stochastic differential game is studied for a linear stochastic differential equation with quadratic cost functionals. The coefficients in the state equation and the weighting matrices in the cost functionals are all deterministic. Closed-loop strategies are introduced, which require to be independent of initial states; and such a nature makes it very useful and convenient in applications. The follower first solves a stochastic linear quadratic optimal control problem, and his optimal closed-loop strategy is characterized by a Riccati equation, together with an adapted solution to a linear backward stochastic differential equation. Then the leader turns to solve a stochastic linear quadratic optimal control problem of a forward-backward stochastic differential equation, necessary conditions for the existence of the optimal closed-loop strategy for the leader is given by a Riccati equation. Some examples are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Stackelberg H, Marktform und Gleichgewicht, Springer, Vienna, 1934. (An English Translation Appeared in The Theory of the Market Economy, Oxford University Press, Oxford, 1952.)

    MATH  Google Scholar 

  2. Simaan M and Jr Cruz J B, On the Stackelberg game strategy in non-zero games, J. Optim. Theory Appl., 1973, 11(5): 533–555.

    Article  MathSciNet  MATH  Google Scholar 

  3. Simaan M and Jr Cruz J B, Additional aspects of the Stackelberg strategy in nonzero-sum games, J. Optim. Theory Appl., 1973, 11(6): 613–626.

    Article  MathSciNet  MATH  Google Scholar 

  4. Castanon D and Athans M, On stochastic dynamic Stackelberg strategies, Automatica J. IFAC, 1976, 12(2): 177–183.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bagchi A and Başar T, Stackelberg strategies in linear-quadratic stochastic differential games, J. Optim. Theory Appl., 1981, 35(3): 443–464.

    Article  MathSciNet  MATH  Google Scholar 

  6. Yong J M, A leader-follower stochastic linear quadratic differential games, SIAM J. Control Optim., 2002, 41(4): 1015–1041.

    Article  MathSciNet  MATH  Google Scholar 

  7. Øksendal B, Sandal L, and Ubøe J, Stochastic Stackelberg equilibria with applications to time dependent newsvendor models, J. Econom. Dynam. Control., 2013, 37(7): 1284–1299.

    Article  MathSciNet  MATH  Google Scholar 

  8. Başar T and Olsder G J, Dynamic Noncooperative Game Theory, 2nd Edition, SIAM, Philadelphia, 1998.

    Book  MATH  Google Scholar 

  9. Bensoussan A, Chen S K, and Sethi S P, The maximum principle for global solutions of stochastic Stackelberg differential games, SIAM J. Control Optim., 2015, 53(4): 1956–1981.

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu J J and Zhang H S, Sufficient and necessary open-loop Stackelberg strategy for two-player game with time delay, IEEE Trans. Cyber., 2016, 46(2): 438–449.

    Article  MathSciNet  Google Scholar 

  11. Xu J J, Shi J T, and Zhang H S, A leader-follower stochastic linear quadratic differential game with time delay, Sci. China Inf. Sci., 2018, 61: 112202:1–112202:13.

    Article  MathSciNet  Google Scholar 

  12. Mukaidani H and Xu H, Stackelberg strategies for stochastic systems with multiple followers, Automatica J. IFAC, 2015, 53: 53–59.

    Article  MathSciNet  MATH  Google Scholar 

  13. Moon J and Başar T, Linear quadratic mean field Stackelberg differential games, Automatica J. IFAC, 2018, 97: 200–213.

    Article  MathSciNet  MATH  Google Scholar 

  14. Li N and Yu Z Y, Forward-backward stochastic differential equations and linear-quadratic generalized Stackelberg games, SIAM J. Control Optim., 2018, 56(6): 4148–4180.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin Y N, Jiang X S, and Zhang W H, Open-loop Stackelberg strategy for the linear quadratic mean-field stochastic differential game, IEEE Tran. Automat. Control, 2019, 64(1): 97–110.

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang G C and Zhang S S, A mean-field linear-quadratic stochastic Stackelberg differential game with one leader and two followers, Journal of Systems Science & Complexity, 2020, 33(5): 1383–1401.

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang J H, Si K H, and Wu Z, Linear-quadratic mixed Stackelberg-Nash stochastic differential game with major-minor agents, Appl. Math. Optim., 2021, 84(3): 2445–2494.

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi J T, Wang G C, and Xiong J, Leader-follower stochastic differential game with asymmetric information and applications, Automatica J. IFAC, 2016, 63: 60–73.

    Article  MathSciNet  MATH  Google Scholar 

  19. Shi J T, Wang G C, and Xiong J, Linear-quadratic stochastic Stackelberg differential game with asymmetric information, Sci. China Inf. Sci., 2017, 60: 1–15.

    Article  Google Scholar 

  20. Shi J T, Wang G C, and Xiong J, Stochastic linear-quadratic Stackelberg differential game with overlapping information, ESAIM: Control Optim. Calc. Var., 2020, 26: Article No. 83, 38 pages.

  21. Du K and Wu Z, Linear-quadratic Stackelberg game for mean-field backward stochastic differential system and applicationm, Math. Probl. Eng., 2019, 2019: Article ID 1798585, 17 pages.

  22. Zheng Y Y and Shi J T, A Stackelberg game of backward stochastic differential equations with applications, Dyn. Games Appl., 2020, 10(4): 968–992.

    Article  MathSciNet  MATH  Google Scholar 

  23. Li Z X and Shi J T, Linear quadratic Stackelberg stochastic differential games: Closed-loop solvability, Proc. 40th Chinese Control Conference, 1063–1070, Shanghai, China, July 26–28, 2021.

  24. Sun J R and Yong J M, Linear quadratic stocahastic differential games: Open-loop and closed-loop saddle points, SIAM J. Control Optim., 2014, 52(6): 4082–4121.

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun J R, Li X, and Yong J M, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM J. Control Optim., 2016, 54(5): 2274–2308.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun J R and Yong J M, Linear quadratic stocahastic two-person nonzero-sum differential games: Open-loop and closed-loop Nash equilibria, Stochastic Process. Appl., 2019, 129(2): 381–418.

    Article  MathSciNet  MATH  Google Scholar 

  27. Li X, Sun J R, and Yong J M, Mean-field stochastic linear quadratic optimal control problems: Closed-loop solvability, Probab. Uncertain. Quant. Risk, 2016, 1(1): 1–24.

    Article  MathSciNet  Google Scholar 

  28. Sun J R and Yong J M, Stochastic linear quadratic optimal control problems in infinite horizon, Appl. Math. Optim., 2018, 78: 145–183.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun J R and Yong J M, Stochastic linear-quadratic optimal control theory: Open-loop and closed-loop solutions, Springer Briefs in Mathematics, Springer, Berlin, 2020.

    Google Scholar 

  30. Li X, Shi J T, and Yong J M, Mean-field linear-quadratic stochastic differential games in an infinite horizon, ESAIM: Control Optim. Calc. Var., 2021, 27: Article No. 81, 40 pages.

  31. Yong J M, Linear forward-backward stochastic differential equations with random coefficients, Probab. Theory Related Fields, 2006, 135(1): 53–83.

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen C I and Cruz J B, Stackelberg solution for two-person games with biased information patterns, IEEE Tran. Automat. Control, 1972, 17(6): 791–798.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Shi.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This work was supported by National Key Research & Development Program of China under Grant No. 2022YFA1006104, National Natural Science Foundations of China under Grant Nos. 11971266, 11831010, and Shandong Provincial Natural Science Foundations under Grant Nos. ZR2022JQ01, ZR2020ZD24, ZR2019ZD42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Shi, J. Linear Quadratic Leader-Follower Stochastic Differential Games: Closed-Loop Solvability. J Syst Sci Complex 36, 1373–1406 (2023). https://doi.org/10.1007/s11424-023-1261-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-1261-6

Keywords

Navigation