Skip to main content
Log in

Synthesis and Characterisation of Chickpea Peptides-Zinc Chelates Having ACE2 Inhibitory Activity

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Tryptic hydrolysates of protein fractions obtained by the Osborne method from chickpea (Cicer arietinum L.) seeds interacted with zinc ions and the results of chelation were monitored by the Energy Dispersive X-Ray (EDX) technique. The glutelin hydrolysate (GluHyd) reacted with zinc ions and depicted a relatively higher zinc content. For this reason, the zinc complex of the glutelin hydrolysate (GluHyd-Zn) was studied deeper, and 11 peptides were identified in its more zinc-containing second fraction obtained after gel filtration. The peptide HKERVQLHIIPTAVGK showed a relatively higher chelating capacity (57.86 ± 2.14%). According to the result of the ICP-OS analysis, 1 mg peptide could chelate 381.61 ± 133.39 µg zinc, and the molar ratio of peptide-zinc was about 1:4. Spectral methods proved that side chain and C-termini carboxyl groups of the peptide mostly were involved in chelation and N atoms of amino side chains, imidazole group of histidine, and N-termini at some extents were occupied by the metal ions. Modeling of zinc-peptide interaction was done using Molecular Operating Environment (MOE) software. The results of the docking correlate with the experimental data.

ACE2 inhibitory effect of HKERVQLHIIPTAVGK-Zn complex (IC50 = 1.5 mg/mL) was better than that of HKERVQLHIIPTAVGK (IC50 = 2.2 mg/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AlbHyd:

Albumin hydrolysate

GloHyd:

Globulin hydrolysate

GluHyd:

Glutelin hydrolysate

ProHyd:

Prolamin hydrolysate

AlbHyd-Zn:

Albumin hydrolysate-zinc complex

GloHyd-Zn:

Globulin hydrolysate-zinc complex

GluHyd-Zn:

Glutelin hydrolysate-zinc complex

ProHyd-Zn:

Prolamin hydrolysate-zinc complex

MOE:

Molecular Operating Environment

CPH:

Chickpea protein hydrolysate

CPH-Zn:

Chickpea protein hydrolysate-Zn complex

CPFs:

Chickpea protein fractions

EDX:

Energy Dispersive X-Ray

PAR:

4-(2-pyridylazo) resorcinol

References

  1. Grüngreiff K, Reinhold D, Wedemeyer H (2016) The role of zinc in liver cirrhosis. Ann Hepatol 15:7–16. https://doi.org/10.5604/16652681.1184191

    Article  CAS  PubMed  Google Scholar 

  2. Wessels I, Rolles B, Rink L (2020) The potential impact of Zinc Supplementation on COVID-19 pathogenesis. Front Immunol 11:1712–1712. https://doi.org/10.3389/fimmu.2020.01712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pradeep H, Najma U, Aparna HS (2021) Milk peptides as novel multi-targeted therapeutic candidates for SARS-CoV2. Protein J 40:310–327. https://doi.org/10.1007/s10930-021-09983-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mostafa-Hedeab G (2020) ACE2 as Drug Target of COVID-19 Virus Treatment, simplified updated review. Rep Biochem Mol Biol 9:97–105. https://doi.org/10.29252/rbmb.9.1.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu LP, Zhang XL, Li J (2021) New perspectives on angiotensin-converting enzyme 2 and its related diseases. World J Diabetes 12:839–854. https://doi.org/10.4239/wjd.v12.i6.839

    Article  PubMed  PubMed Central  Google Scholar 

  6. Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4:176–190. https://doi.org/10.3945/an.112.003210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhowmik D, Bhattacharjee C, Kumar S (2010) A potential medicinal importance of zinc in human health and chronic disease. Int J Pharm Biomed Sci 1:5–11

    Google Scholar 

  8. Jothimani D, Kailasam E, Danielraj S, Nallathambi B, Ramachandran H, Sekar P, Manoharan S, Ramani V, Narasimhan G, Kaliamoorthy I, Rela M (2020) COVID-19: poor outcomes in patients with zinc deficiency. Int J Infect Dis 100:343–349. https://doi.org/10.1016/j.ijid.2020.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365. https://doi.org/10.3390/ijerph7041342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liao W, Lai T, Chen L, Fu J, Sreenivasan ST, Yu Z, Ren J (2016) Synthesis and characterization of a Walnut peptides-zinc complex and its antiproliferative activity against human breast carcinoma cells through the induction of apoptosis. J Agric Food Chem 64:1509–1519. https://doi.org/10.1021/acs.jafc.5b04924

    Article  CAS  PubMed  Google Scholar 

  11. Fang Z, Xu L, Lin Y, Cai X, Wang S (2018) The preservative potential of Octopus scraps peptides – zinc chelate against Staphylococcus aureus: its fabrication, antibacterial activity and action mode. Food Control 98. https://doi.org/10.1016/j.foodcont.2018.11.015

    Article  Google Scholar 

  12. Miquel E, Farré R (2007) Effects and future trends of casein phosphopeptides on zinc bioavailability. Trends Food Sci Technol 18:139–143. https://doi.org/10.1016/j.tifs.2006.11.004

    Article  CAS  Google Scholar 

  13. Sauer AK, Pfaender S, Hagmeyer S, Tarana L, Mattes AK, Briel F, Küry S, Boeckers TM, Grabrucker AM (2017) Characterization of zinc amino acid complexes for zinc delivery in vitro using Caco-2 cells and enterocytes from hiPSC. Biometals 30:643–661. https://doi.org/10.1007/s10534-017-0033-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lönnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378s–1383s. https://doi.org/10.1093/jn/130.5.1378S

    Article  PubMed  Google Scholar 

  15. Wang C, Li B, Ao J (2012) Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn and LC-MS/MS. Food Chem 134:1231–1238. https://doi.org/10.1016/j.foodchem.2012.02.204

    Article  CAS  PubMed  Google Scholar 

  16. Zhu K-X, Wang X-P, Guo X-N (2015) Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. JFF 12:23–32. https://doi.org/10.1016/j.jff.2014.10.030

    Article  CAS  Google Scholar 

  17. Xie N, Huang J, Li B, Cheng J, Wang Z, Yin J, Yan X (2015) Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues. Food Chem 173:210–217. https://doi.org/10.1016/j.foodchem.2014.10.030

    Article  CAS  PubMed  Google Scholar 

  18. Fu T, Zhang S, Sheng Y, Feng Y, Jiang Y, Zhang Y, Yu M, Wang C (2020) Isolation and characterization of zinc-binding peptides from mung bean protein hydrolysates. Eur Food Res Technol 246. https://doi.org/10.1007/s00217-019-03397-8

  19. Zhu S, Zheng Y, He S, Su D, Nag A, Zeng Q, Yuan Y (2021) Novel Zn-Binding peptide isolated from soy protein hydrolysates: purification, structure, and digestion. J Agric Food Chem 69:483–490. https://doi.org/10.1021/acs.jafc.0c05792

    Article  CAS  PubMed  Google Scholar 

  20. Chen D, Liu Z, Huang W, Zhao Y, Dong S, Zeng M (2013) Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate. JFF 5:689–697. https://doi.org/10.1016/j.jff.2013.01.012

    Article  CAS  Google Scholar 

  21. Chen Q, Guo L, Du F, Chen T, Hou H, Li B (2017) The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells. Int J Food Sci Technol 52:1283–1290. https://doi.org/10.1111/ijfs.13396

    Article  CAS  Google Scholar 

  22. Liu X, Wang Z, Zhang J, Song L, Li D, Wu Z, Zhu B, Nakamura Y, Shahidi F, Yu C, Zhou D (2019) Isolation and identification of zinc-chelating peptides from sea cucumber (Stichopus japonicus) protein hydrolysate. J Sci Food Agric 99:6400–6407. https://doi.org/10.1002/jsfa.9919

    Article  CAS  PubMed  Google Scholar 

  23. Lupaescu AV, Mocanu CS, Drochioiu G, Ciobanu CI (2021) Zinc binding to NAP-Type neuroprotective peptides: nuclear magnetic resonance studies and molecular modeling. Pharmaceuticals (Basel) 14. https://doi.org/10.3390/ph14101011

  24. Al-Snafi A (2016) The medical importance of Cicer arietinum -A review. IOSR J Pharm 6:29–40

    CAS  Google Scholar 

  25. Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. BJN 108:S11–S26. https://doi.org/10.1017/S0007114512000797

    Article  CAS  Google Scholar 

  26. Ahangaran M (2022) Bioactive peptides and antinutrients in chickpea: description and properties (a review). Trudy po prikladnoj botanike, genetike i selekcii v. 183:pp. 214-223-2022 v.2183 no.2021 https://doi.org/10.30901/2227-8834-2022-1-214-223

  27. Real Hernandez LM (2019) Gonzalez de Mejia EJCrifs, safety f. CRFSFS 18:1913–1946

    CAS  Google Scholar 

  28. Megías C, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millan F, Vioque J (2007) Affinity purification of copper chelating peptides from chickpea protein hydrolysates. J Agric Food Chem 55:3949–3954. https://doi.org/10.1021/jf063401s

    Article  CAS  PubMed  Google Scholar 

  29. Mukhamedov N, Mirzaakhmedov SY, Gao YH, Waili A, Ziyavitdinov ZF, Bozorov SS, Aisa HA, Yili A (2022) Zinc-binding peptides from protein of Cicer arietinum. Chem Nat Compd 58:86–89. https://doi.org/10.1007/s10600-022-03602-3

    Article  CAS  Google Scholar 

  30. Agboola S, Ng D, Mills D (2005) Characterisation and functional properties of australian rice protein isolates. J Cereal Sci 41:283–290. https://doi.org/10.1016/j.jcs.2004.10.007

    Article  CAS  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. JBC 193:265–275

    Article  CAS  Google Scholar 

  32. Wubulikasimu A, Omar A, Gao Y, Mukhamedov N, Arken A, Wali A, Mirzaakhmedov SY, Yili A (2021) Antioxidant hydrolysate of Sericin from Bombyx mori Cocoons. Chem Nat Compd 57:346–349. https://doi.org/10.1007/s10600-021-03348-4

    Article  CAS  Google Scholar 

  33. Mukhamedov N, Wubulikasimu A, Rustamova N, Nuerxiati R, Mirzaakhmedov S, Ishimov U, Ziyavitdinov J, Yili A, Aisa H (2021) Synthesis and characterization of Novel chickpea protein hydrolysate-vanadium complexes having cell Inhibitory Effects on Lung Cancer A549 cells lines. Protein J 40. https://doi.org/10.1007/s10930-021-09979-4

  34. Udechukwu MC, Downey B, Udenigwe CC (2018) Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chem 240:1227–1232. https://doi.org/10.1016/j.foodchem.2017.08.063

    Article  CAS  PubMed  Google Scholar 

  35. Soto-Madrid D, Pérez N, Gutiérrez Cutiño M, Matiacevich S, Zúñiga R (2022) Structural and physicochemical characterization of extracted proteins fractions from Chickpea (Cicer arietinum L.) as a potential food ingredient to Replace Ovalbumin in Foams and Emulsions. Polymers 1:110 https://doi.org/10.3390/polym15010110

  36. Tavano OL, Neves VA (2008) Isolation, solubility and in vitro hydrolysis of chickpea vicilin-like protein. Food Sci Technol 41:1244–1251. https://doi.org/10.1016/j.lwt.2007.08.003

    Article  CAS  Google Scholar 

  37. Wang R, He S, Xuan Y, Cheng C (2020) Preparation and characterization of whey protein hydrolysate-Zn complexes. J Food Meas Charact 14:254–261. https://doi.org/10.1007/s11694-019-00287-1

    Article  Google Scholar 

  38. Dunbar RC (2015) Spectroscopy of metal-ion complexes with peptide-related ligands. Top Curr Chem 364:183–223. https://doi.org/10.1007/128_2014_578

    Article  CAS  PubMed  Google Scholar 

  39. Udechukwu MC, Downey B, Udenigwe CC (2018) Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chem 240:1227–1232. https://doi.org/10.1016/j.foodchem.2017.08.063

    Article  CAS  PubMed  Google Scholar 

  40. Fang Z, Xu L, Lin Y, Cai X, Wang S (2019) The preservative potential of Octopus scraps peptides – zinc chelate against Staphylococcus aureus: its fabrication, antibacterial activity and action mode. Food Control 98:24–33. https://doi.org/10.1016/j.foodcont.2018.11.015

    Article  CAS  Google Scholar 

  41. Fu T, Zhang S, Sheng Y, Feng Y, Jiang Y, Zhang Y, Yu M, Wang C (2020) Isolation and characterization of zinc-binding peptides from mung bean protein hydrolysates. Eur Food Res Technol 246:113–124. https://doi.org/10.1007/s00217-019-03397-8

    Article  CAS  Google Scholar 

  42. Wang Q, Xiong YL (2018) Zinc-binding behavior of hemp protein hydrolysates: Soluble versus insoluble zinc-peptide complexes. J Funct Foods 49:105–112. https://doi.org/10.1016/j.jff.2018.08.019

    Article  CAS  Google Scholar 

  43. Fan W, Wang Z, Mu Z, Du M, Jiang L, Ei-Seedi H, Wang C (2020) Characterizations of a Food Decapeptide chelating with zn(II). eFood 1 https://doi.org/10.2991/efood.k.200727.001

  44. Ke X, Hu X, Li L, Yang X, Chen S, Wu Y, Xue C (2021) A novel zinc-binding peptide identified from tilapia (Oreochromis niloticus) skin collagen and transport pathway across Caco-2 monolayers. Food Biosci 42:101127. https://doi.org/10.1016/j.fbio.2021.101127

    Article  CAS  Google Scholar 

  45. Wang C, Li B, Ao J (2012) Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2 + and LC–MS/MS. Food Chem 134:1231–1238. https://doi.org/10.1016/j.foodchem.2012.02.204

    Article  CAS  PubMed  Google Scholar 

  46. Sun X, Sarteshnizi RA, Boachie RT, Okagu OD, Abioye RO, Pfeilsticker Neves R, Ohanenye IC, Udenigwe CC (2020) Peptide-Mineral Complexes: understanding their chemical interactions, bioavailability, and potential application in Mitigating Micronutrient Deficiency. Foods 9 https://doi.org/10.3390/foods9101402

  47. Lu W, Dong C (2022) Research progress of metal chelating peptides. Food and Health 4:17–22. https://doi.org/10.53388/FH20221101019

    Article  Google Scholar 

  48. Mayor-Ibarguren A, Busca-Arenzana C, Robles-Marhuenda Á (2020) A hypothesis for the possible role of Zinc in the immunological pathways related to COVID-19 infection. 11 https://doi.org/10.3389/fimmu.2020.01736

  49. Speth RC, Carrera EJ, Jean-Baptiste M, Joachim A, Linares AJTFJ (2014) Concentration-dependent effects of zinc on angiotensin-converting enzyme-2 activity (1067.4). FASEB J 28:1067. https://doi.org/10.1096/fasebj.28.1_supplement.1067.4

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by CAS-TWAS President’s Fellowship Program.

This work was Funded by the Xinjiang Uygur Autonomous Region Tianshan Yingcai-Leading Talents in Scientific and Technological Innovation (Grand No. 2022TSYCLJ0008), Scientific Report of Foreign Expert by the PIFI Fund of the Chinese Academy of Sciences for invited scientists, 2019VBA0013, Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2023VBB0005), and National Foreign Expert Program “Foreign Young Talent Program (Grant No. QN2022045004L). We also thank Soyib Bozorov, Oybek Tursunkulov, and Uchqun Ishimov for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

Nurkhodja Mukhamedov, Akmal Asrorov, Sharafitdin Mirzaakhmedov, Haji Akber Aisa, and Abulimiti Yili wrote the main manuscript text. Ansor Yashinov and Ahmidin Wali conducted experiments of biological activity screening and ACE2 inhibitory activity test. Muzaffar Kayumov made molecular modelling of peptide-zinc interaction. All authors reviewed the manuscript.

Corresponding author

Correspondence to Abulimiti Yili.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, N., Asrorov, A., Yashinov, A. et al. Synthesis and Characterisation of Chickpea Peptides-Zinc Chelates Having ACE2 Inhibitory Activity. Protein J 42, 547–562 (2023). https://doi.org/10.1007/s10930-023-10133-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10133-5

Keywords

Navigation