Skip to main content
Log in

Synthesis and Electrophilic Heterocyclization of 3-Alkenylsulfanyl-5-phenyl-1,2,4-triazines under the Action of Iodine and Bromine

  • RESEARCH ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract—

Derivatives of 1,2,4-triazine-3-thione are interesting objects for study due to their wide range of application as medicinal drugs, substances with optoelectronic properties, and precursors for the synthesis of new pyridine systems by the Diels–Alder reaction. In this study, alkylation of 5-phenyl-2,3-dihydro-1,2,4-triazine-3-thione (1) with 3-chloro-2-methylprop-1-ene, 2,3-dibromoprop-1-ene, 1-bromo-3-methylbut-2-ene and 4-bromobut-1-ene yielded previously unknown 3-(2-methylprop-1-enyl)-, 3-(2-bromoprop-1-enyl)-, 3- prenylsulfanyl-, and 3-butenylsulfanyl-5-phenyl-1,2,4-triazines (2a–2d). The 1H NMR spectrum of compound 2b showed a downfield shift of the SCH2-group and the vinyl group proton signal by 0.48 and 0.60 ppm compared with similar signals in the spectrum of 3‑allylsulfanyl-5-phenyl-1,2,4-triazine. This may be due to the content of the bromine atom in the allyl fragment. The weakest signal in the 13C NMR spectra of compounds 2а–2d at 171.86–173.68 ppm belongs to the aromatic carbon atom of the triazine ring in the third position (C‑3) bonded to a sulfur atom and two nitrogen atoms. Using electrophilic heterocyclization of metallyl-, bromolyl-, prenyl-, and butenyl sulfides 2a–2d, the synthesis of new fused heterocyclic systems of the ionic type with a bridging nitrogen atom was carried out. At the same time, heterocyclization of the 2a, 2b compounds yielded [1,3]thiazolo[3,2-b][1,2,4]triazinium halides; heterocyclization of compounds 2c, 2d gave [1,3]thiazino[3,2-b][1,2,4]triazinium halides. The 1H NMR spectra of triazinium halides show a characteristic downfield shift of the H-6 aromatic proton signal compared to the similar signal in the spectrum of the initial sulfides 2а–2d. The 13C NMR spectra of triazinium halides feature a shift of the signal of the aromatic carbon atom bonded to the sulfur atom and two nitrogen atoms (to the range of 162.56–172.42 ppm), which can be explained by the occurrence of a positively charged nitrogen atom in their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Berestovitskaya, V.M., Ozerova, O.Y., Efimova, T.P., Gurzhiy, V.V., and Novikova, T. A., Mendeleev Commun., 2016, vol. 26, no. 4, p. 323. https://doi.org/10.1016/j.mencom.2016.07.019

    Article  CAS  Google Scholar 

  2. Nassar, I.F., J. Heterocycl. Chem., 2013, vol. 50, p. 129.

    Article  CAS  Google Scholar 

  3. Smagin, S.S., Bogachev, V.E., Yakubovskiy, A.K., Metkalova, S.E., Privol’neva, T.P., Chugunov, V.V., and Lavretskaya, E.F., Khim.-Farm. Zh., 1975, vol. 9, no. 4, p. 11.

    CAS  Google Scholar 

  4. Rezaei, B. and Fazlollahi, M., Chem. Centr. J., 2013, vol. 7, p. 130. https://doi.org/10.1186/1752-153X-7-130

    Article  CAS  Google Scholar 

  5. Rusinov, V.L., Charushin, V.N., and Chupakhin, O.N., Russ. Chem. Bull., 2018, no. 4, p. 573.

  6. Kravchenko, A.N., Baranov, V.V., and Gazieva, G.A., Russ. Chem. Rev., 2018, vol. 87, no. 1, p. 89. https://doi.org/10.1070/RCR4763

    Article  CAS  Google Scholar 

  7. Ivanov, S.M., Rodinovskaya, L.A., Shestopalov, A.M., and Mironovich, L.M., Tetrahedron Lett., 2017, vol. 58, no. 19, p. 1851. https://doi.org/10.1016/j.tetlet.2017.03.083

    Article  CAS  Google Scholar 

  8. Izmest’ev, A.N., Gazieva, G.A., Anikina, L.V., Kolotyrkina, N.G., Kravchenko, A.N., and Kulikov, A.S., Russ. J. Org. Chem., 2017, vol. 53, no. 5, p. 753.

    Article  Google Scholar 

  9. Gazieva, G.A., Poluboyarov, P.A., Nelyubina, Yu.V., Struchkova, M.I., and Kravchenko, A.N., Chem. Heterocycl. Compd., 2012, vol. 48, p. 1382.

    Article  CAS  Google Scholar 

  10. Savateev, K. V., Ulomsky, E. N., Butorin, I. I., Charushin, V. N., Rusinov, V. L., & Chupakhin, O. N., Russ. Chem. Rev., vol. 87, no. 7, p. 636. .https://doi.org/10.1070/RCR4792

  11. Branowska, D., Olender, E., Swietochowska, M., Karczmarzyk, Z., Wysocki, W., Cichosz, I., Wozna, A., Urbanczyk-Lipkowska, Z., Kalicki, P., and Gil, M., Tetrahedron, 2017, vol. 73, no. 4, p. 411. https://doi.org/10.1016/j.tet.2016.12.030

    Article  CAS  Google Scholar 

  12. Kopchuk, D.S., Chepchugov, N.V., Taniya, O.S., Khasanov, A.F., Giri, K., Kovalev, I.S., Santra, S., Zyryanov, G.V., Majee, A., Rusinov, V.L., and Chupakhin, O.N., Tetrahedron Lett., 2016, vol. 57, no. 50, p. 5639. https://doi.org/10.1016/j.tetlet.2016.11.008

    Article  CAS  Google Scholar 

  13. Chepchugov, N.V., Kopchuk, D.S., Kovalev, I.S., Zyryanov, G.V., Rusinov, V.L., and Chupakhin, O.N., Mendeleev Commun., 2016, vol. 26, no. 3, p. 220. https://doi.org/10.1016/j.mencom.2016.04.014

    Article  CAS  Google Scholar 

  14. Shabunina, O.V., Kapustina, D.Y., Krinochkin, A.P., Kim, G.A., Kopchuk, D.S., Zyryanov, G.V., and Chupakhin, O.N., Mendeleev Commun., 2017, vol. 27, no. 6, p. 602. https://doi.org/10.1016/j.mencom.2017.11.021

    Article  CAS  Google Scholar 

  15. Kopchuk, D.S., Krinochkin, A.P., Kim, G.A., and Kozhevnikov, D.N., Mendeleev Commun., 2017, vol. 27, no. 4, p. 394. https://doi.org/10.1016/j.mencom.2017.07.026

    Article  CAS  Google Scholar 

  16. Papadopoulou, M.V. and Taylor, E.C., Tetrahedron, 2021, vol. 89, p. 132158. https://doi.org/10.1016/j.tet.2021.132158

  17. Rudakov, B.V. and Kim, D.G., J. Org. Chem., 1997, vol. 33, no. 7, p. 1103.

    Google Scholar 

  18. Kim, D.G., Rybakova, A.V., Sharutin, V.V., Danilina, E.I., and Sazhayeva, O.V., Mendeleev Commun., 2019, vol. 29, p. 59. https://doi.org/10.1016/j.mencom.2019.01.019

    Article  CAS  Google Scholar 

  19. Rudakov, B.V., Kim, D.G., and Alekseev, S.G., Chem. Heterocycl. Compd., 1998, vol. 34, no. 1, p. 102.

    Article  CAS  Google Scholar 

  20. Rybakova, A.V., Kim, D.G., Danilina, E.I., Sazhaeva, O.V., Ezhikova, M.A., and Kodess, M.I., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2020, vol. 63, no. 6, p. 19. https://doi.org/10.6060/ivkkt.20206306.6102

    Article  CAS  Google Scholar 

  21. Bruker SMART and SAINT-Plus, versions 5.0, Data Collection and Processing Software for the SMART System, Madison: Bruker, 1998.

  22. Bruker SHELXTL/PC, versions 5.10, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Madison: Bruker, 1998.

  23. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  24. Privalov, T., Boschloo, G., Hagfeldt, A., Svensson, P.H., and Kloo, L., J. Phys. Chem. C, 2009, vol. 113, p. 783. https://doi.org/10.1021/jp810201c

    Article  CAS  Google Scholar 

  25. Grafe-Kavoosian, A., Nafepour, S., Nagel, K., and Tebbe, K.-F., Z. Naturforsch., B: J. Chem. Sci., 1998, v. 53, p. 641. https://doi.org/10.1515/znb-1998-0701

    Article  Google Scholar 

  26. Frolova, T.V., Kim, D.G., and Slepukhin, P.A., J. Org. Chem., 2016, vol. 52, no. 9, p. 1356.

    Google Scholar 

  27. Wu, Y., Shao, M., Feng, Z., Gu, X., Hong, Y., Cui, Q., Lianbing, R., and Wang, S., Asian J. Org. Chem., 2017, vol. 6, p. 76. https://doi.org/10.1002/ajoc.201600503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharutin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybakova, A.V., Kim, D.G., Sharutin, V.V. et al. Synthesis and Electrophilic Heterocyclization of 3-Alkenylsulfanyl-5-phenyl-1,2,4-triazines under the Action of Iodine and Bromine. rev. and adv. in chem. 13, 28–37 (2023). https://doi.org/10.1134/S2634827623700204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623700204

Keywords:

Navigation