Skip to main content
Log in

Sol–Gel Synthesis of Nanodispersed Solid Solutions Based on SrxBa(1 – x)Fe12O19 Barium Hexaferrite

  • SHORT COMMUNICATION
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

This paper studies the application of the sol–gel method in the synthesis of M-ferrite of the composition SrxBa(1 – x)Fe12O19 (х = 0, 0.3, 0.5, 0.7, 1). The synthesis procedure is based on preparing a gel from citric acid and barium, strontium, and iron nitrates, its calcination at 500°C, mechanochemical activation, and recalcination at 700°C. The target product is a dark brown powder; it was studied using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and differential scanning calorimetry (DSC). The single-phase state of the synthesized samples has been confirmed by powder X-ray diffraction. Examination of the X-ray diffraction patterns of the synthesized hexaferrites and the X-ray diffraction patterns of the ICDD reference compounds reveals that all diffraction peaks coincide. The unit cell parameters of the samples calculated from X-ray diffraction patterns depend linearly on the degree of substitution of barium in hexaferrite according to the Vegard rule for solid solutions, which confirms the successful substitution of barium ions for strontium ions in the structure of barium hexaferrite. The morphological parameters of the particles of the obtained solid solutions were studied using SEM. Examining the electron microscopic images shows that particles of an average size of 50 nm formed in all the solid solutions. The average size of the coherent scattering regions, as calculated by the Scherrer equation, was 25 nm. The regular hexagon faceting characteristic of hexaferrite particles cannot be observed in SEM images because these particles are too small. Mapping of the images indicates a high level of homogenization of the initial reagent under the selected synthesis conditions. DSC yielded the values of the Curie temperature for each level of substitution with the Curie temperature increasing with the substitution level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Pullar, R.C., Prog. Mater. Sci., 2012, vol. 57, no. 7, p. 1191. https://doi.org/10.1016/j.pmatsci.2012.04.001. 10.1016/j.pmatsci.2012.04.001

  2. Nikmanesh, H., Hoghoghifard, S., and Hadi-Sichani, B., J. Alloys Compd., 2019, vol. 775, p. 1101. https://doi.org/10.1016/j.jallcom.2018.10.051

    Article  CAS  Google Scholar 

  3. Hashhash, A., Hassen, A., Baleidy, W.S., and Refai, H.S., J. Alloys Compd., 2021, vol. 873, p. 159812. https://doi.org/10.1016/j.jallcom.2021.159812

  4. Dai, Y., Lan, Z., Yu, Z., Sun, K., Guo, R., Wu, G., Jiang, X., Wu, C., Liu, Y., Liu, H., and Tong, W., Ceram. Int., 2021, vol. 47, no. 7, p. 8980. https://doi.org/10.1016/j.ceramint.2020.12.020

    Article  CAS  Google Scholar 

  5. Han, G., Sui, R., Yu, Y., Wang, L., Li, M., Li, J., Liu, H., and Yang, W., J. Magn. Magn. Mater., 2021, vol. 528, p. 167824. https://doi.org/10.1016/j.jmmm.2021.167824

  6. Rasheed, A., Bibi, I., Majid, F., Kamal, S., Taj, B., Raza, M., Khaliq, N., Katubi, K., Ezzine, S., Alwadai, N., and Iqbal, M., Phys. B (Amsterdam, Neth.), 2022, vol. 646, p. 414303. https://doi.org/10.1016/j.physb.2022.414303

    Book  Google Scholar 

  7. Wang, Z., Yang, M., Zheng, B., Wang, P., Wang, Y., Chen, H., Song, X., Liu, J., and Zhang, M., Ceram. Int., 2022, vol. 48, no. 19, p. 27779. https://doi.org/10.1016/j.ceramint.2022.06.079

    Article  CAS  Google Scholar 

  8. Serletis, C., Litsardakis, G., Pavlidou, E., and Efthimiadis, K., Phys. B (Amsterdam, Neth.), 2017, vol. 525, no.15, p. 78. https://doi.org/10.1016/j.physb.2017.09.025

  9. Kaman, O., Kubaniova, D., Knizek, K., Kubickova, L., Klementova, M., Kohout, J., and Jirak, Z., J. Alloys Compd., 2021, vol. 888, p. 161471. https://doi.org/10.1016/j.jallcom.2021.161471

  10. Martirosyan, K.S., Galstyan, E., Hossain, S., Wang, Y., and Litvinov, D., Mater. Sci. Eng., B, 2011, vol. 176, no. 1, p. 8. https://doi.org/10.1016/j.mseb.2010.08.005

    Article  CAS  Google Scholar 

  11. Mahmoud, M.H., Hassan, A., Said, A., and Taha, T., Inorg. Chem. Commun., 2022, vol. 144, p. 109932. https://doi.org/10.1016/j.inoche.2022.109932

  12. You, L., Qiao, L., Zheng, J., Jiang, M., Jiang, L., and Sheng, J., J. Rare Earths, 2008, vol. 26, no. 1, p. 81. https://doi.org/10.1016/S1002-0721(08)60042-3

    Article  Google Scholar 

  13. Li, L.-Z., Sokolov, A., Yu, C., Li, Q., Li, Q., Qian, K., and Harris, V., Ceram. Int., 2021, vol. 47, no. 18, p. 25514. https://doi.org/10.1016/j.ceramint.2021.05.275

    Article  CAS  Google Scholar 

  14. Tkachenko, M.V., Ol’khovik, L.P., and Kamzin, A.S., Tech. Phys. Lett., 2011, vol. 37, no. 6, p. 494. https://doi.org/10.1134/S1063785011060149

    Article  CAS  Google Scholar 

  15. Tkachenko, M.V., Ol’khovik, L.P., Kamzin, A.S., and Keshri, S., Tech. Phys. Lett., 2014, vol. 40, no. 1, p. 4. https://doi.org/10.1134/S106378501401012X

    Article  CAS  Google Scholar 

  16. Danewalia, S.S. and Singh, K., Mater. Today Bio, 2021, vol. 10, p. 100100. https://doi.org/10.1016/j.mtbio.2021.100100

  17. Prathap, S., Madhuri, W., and Meena, S.S., Mater. Charact., 2021, vol. 177, p. 111168. https://doi.org/10.1016/j.matchar.2021.111168

  18. Almessiere, M.A., Slimani, Y., Gungunes, H., Manikandan, A., and Baykal, A., Results Phys., 2019, vol. 13, p. 102166. https://doi.org/10.1016/j.rinp.2019.102166

  19. Alna’washi, G.A., Alsmadi, A., Bsoul, I., Salameh, B., Alzoubi, G., Shatnawi, M., Hamasha, S., and Mahmood, S., Results Phys., 2021, vol. 28, p. 104574. https://doi.org/10.1016/j.rinp.2021.104574

  20. Huang, K., Yu, J., Zhang, L., Xu, J., Yang, Z., Liu, C., Wang, W., and Kan, X., J. Alloys Compd., 2019, vol. 803, p. 971. https://doi.org/10.1016/j.jallcom.2019.06.348

    Article  CAS  Google Scholar 

  21. Singh, V.P., Batoo, K., Singh, M., Kumar, S., and Kumar, G., J. Mater. Sci. Mater. Electron., 2020, vol. 31, no. 5, p. 3951. https://doi.org/10.1007/s10854-020-02943-5

    Article  CAS  Google Scholar 

  22. Elkhouad, S., Yamkane, Z., Louafi, J., Moutataouia, M., Omari, L., Elouafi, A., Moubah, R., Lassri, H., and El Moussaoui, H., Solid State Commun., 2021, vol. 337, p. 114453. https://doi.org/10.1016/j.ssc.2021.114453

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, A.I., Vinnik, D.A., Zherebtsov, D.A. et al. Sol–Gel Synthesis of Nanodispersed Solid Solutions Based on SrxBa(1 – x)Fe12O19 Barium Hexaferrite. rev. and adv. in chem. 13, 60–65 (2023). https://doi.org/10.1134/S2634827623700198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623700198

Keywords:

Navigation