Skip to main content
Log in

On the Computational Complexity of Compressed Power Series

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We present computational algorithms and complexity estimates for power series in which all exponents are positive integers raised to one and the same integer power \(\ge2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, 1952).

    MATH  Google Scholar 

  2. S. M. Voronin and A. A. Karatsuba, The Riemann Zeta Function (Nauka, Moscow, 1994) [in Russian].

    MATH  Google Scholar 

  3. V. V. Dodonov, ““Nonclassical” states in quantum optics: a “squeezed” review of the first 75 years,” J. Opt. B Quantum Semiclass. Opt. 4 (1), R1–R33 (2002).

    Article  MathSciNet  Google Scholar 

  4. R. Tanaś, “Nonclassical states of light propagating in Kerr media, Chap. 6,” in Theory of Nonclassical States of Light, Ed. by V. V. Dodonov and V. I. Man’ko (CRC Press, 2019), pp. 267–312.

    Google Scholar 

  5. A. Karatsuba and Yu. Ofman, “Multiplication of many-digital numbers by automatic computers,” Dokl. Akad. Nauk SSSR 145 (2), 293–294 (1962).

    Google Scholar 

  6. E. B. Dynkin, A. N. Kolmogorov, A. I. Kostrikin, I. I. Pjateckiĭ-Šapiro, I. R. Šafarevič, and Ja. G. Sinaĭ, Six Lectures Delivered at the International Congress of Mathematicians in Stockholm, in Amer. Math. Soc. Transl. 2 (Amer. Math. Soc., 1962), Vol. 31.

    Google Scholar 

  7. A. A. Karatsuba, “The complexity of computations,” Proc. Steklov Inst. Math. 211, 169–183 (1995).

    MathSciNet  MATH  Google Scholar 

  8. A. A. Karatsuba, “Comments to My Works, Written by Myself,” Proc. Steklov Inst. Math. 282 (Suppl. 1), S1–S23 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. L. Toom, “The complexity of a scheme of functional elements simulating the multiplication of integers,” Dokl. Akad. Nauk SSSR 150 (3), 496–498 (1963).

    MathSciNet  MATH  Google Scholar 

  10. A. Schönhage and V. Strassen, “Schnelle Multiplikation grosser Zahlen,” Computing (Arch. Elektron. Rechnen) 7, 281–292 (1971).

    MathSciNet  MATH  Google Scholar 

  11. M. Fürer, “Faster integer multiplication,” SIAM J. Comput. 39 (3), 979–1005 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. A. Karatsuba, “Fast Evaluation of Transcendental Functions,” Problems Inform. Transmission 27 (4), 339–360 (1991).

    MathSciNet  MATH  Google Scholar 

  13. E. A. Karatsuba, “Fast Calculation of the Riemann Zeta Function \(\zeta(s)\) for Integer Values of the Argument \(s\),” Problems Inform. Transmission 31 (4), 353–362 (1995).

    MathSciNet  MATH  Google Scholar 

  14. E. A. Karatsuba, “Fast Evaluation of the Hurwitz Zeta Function and Dirichlet \(L\)-Series,” Problems Inform. Transmission 34 (4), 342–353 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. A. Karatsuba, “Fast evaluation of hypergeometric functions by FEE,” in Computational Methods and Function Theory (Nicosia, 1997), Ser. Approx. Decompos., (World Sci., River Edge, NJ, 1999), Vol. 11, pp. 303–314.

    Google Scholar 

  16. E. A. Karatsuba, “Fast computation of \(\zeta(3)\) and of some special integrals using the Ramanujan formula and polylogarithms,” BIT 41 (4), 722–730 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. A. Karatsuba, “Fast computation of some special integrals of mathematical physics,” in Scientific Computing, Validated Numerics, Interval Methods, Ed. by W. Kramer and J. W. von Gudenberg (2001), pp. 29–41.

    Chapter  Google Scholar 

  18. E. A. Karatsuba, “On computation of the Bessel function by summing up the series,” Num. Anal. Appl. 12 (4), 372–387 (2019).

    Article  MathSciNet  Google Scholar 

  19. C. L. Siegel, Transcendental Numbers (Princeton Univ. Press, Princeton, 1949).

    MATH  Google Scholar 

  20. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol 1: Elementary Functions (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  21. J. Faulhaber, Academia Algebrae – Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden (Remmelin Schönigk, Ulm Augspurg, 1631).

    Google Scholar 

  22. J. Bernoulli, “Ars conjectandi, opus posthumum,” in Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis (Thurneysen Brothers, Basel, 1713).

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, project no. 22-21-00727, https://rscf.ru/en/project/22-21-00727/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Karatsuba.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 113–120 https://doi.org/10.4213/mzm13966.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karatsuba, E.A. On the Computational Complexity of Compressed Power Series. Math Notes 114, 92–98 (2023). https://doi.org/10.1134/S000143462307009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143462307009X

Keywords

Navigation