Skip to main content
Log in

On Some Properties of Solutions of Switched Differential Equations

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We consider an important class of hybrid systems, called switching systems, in which a continuous process is controlled by a discrete control between different subsystems. In the case where the switching system has a periodic solution, a lower bound for its period is obtained. For a second-order linear switched differential equation, an inequality is proved that allows one to estimate the distance between two successive zeros of its solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Liberzon, Switching in Systems and Control (Birkhäuser, Boston, MA, 2003).

    Book  MATH  Google Scholar 

  2. A. Schild and J. Lunze, “Switching surface design for periodically operated discretely controlled continuous systems,” in Hybrid Systems: Computation and Control, Lecture Notes in Comput. Sci. (Springer, Berlin, 2008), Vol. 4981, pp. 471–485.

    Chapter  MATH  Google Scholar 

  3. J. P. Hespanha, D. Liberzon, and A. S. Morse, “Logic-based switching control of a nonholonomic system with parametric modeling uncertainty,” Systems Control Lett. 38 (3), 167–177 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control Systems 19 (5), 59–70 (1999).

    Article  MATH  Google Scholar 

  5. Z. Sun and S. S. Ge, Stability Theory of Switched Dynamical Systems (Springer- Verlag, London, 2011).

    Book  MATH  Google Scholar 

  6. Y. Ma, H. Kawakami, and C. K. Tse, “Bifurcation analysis of switched dynamical systems with periodically moving borders,” IEEE Trans. Circuits Syst. I. Regul. Pap. 51 (6), 1184–1193 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Asahara and T. Kousaka, “Stability analysis of state-time-dependent nonlinear hybrid dynamical systems,” IEEJ Trans. Electrical and Electronic Engineering, 1–6 (2018).

    Google Scholar 

  8. A. Yu. Aleksandrov and A. V. Platonov, “On the asymptotic stability of solutions of hybrid multivariable systems,” Autom. Remote Control 75 (5), 818–828 (2014).

    Article  MathSciNet  Google Scholar 

  9. A. S. Fursov, S. I. Minyaev, and E. A. Iskhakov, “Digital stabilizer design for a switched linear system,” Differ. Equations 53 (8), 1093–1099 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Fursov, I. V. Kapalin, and H. Hongxiang, “Stabilization of multiple-input switched linear systems by a variable-structure controller,” Differ. Equations 53 (11), 1501–1511 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Corona, A. Giu, and C. Seatzu, “Stabilization of switched systems via optimal control,” Nonlinear Anal. Hybrid Syst. 11 (1), 1–10 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear systems: a survey of recent results,” IEEE Trans. Automat. Control 54 (2), 308–322 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. J. Olsder, “On the existence of periodic behaviour of switched linear systems,” Internat. J. Systems Sci. 42 (6), 1035–1045 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Porfiri, D. G. Roberson, and D. J. Stilwell, “Fast switching analysis of linear switched systems using exponential splitting,” SIAM J. Control Optim. 47 (5), 2582–2597 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Vu and D. Liberzon, “Common Lyapunov functions for families of commuting nonlinear systems,” Systems Control Lett. 54 (5), 405–416 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Yanga, B. Jiang, and V. Cocquempot, “A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes,” Nonlinear Anal. Hybrid Syst. 13 (1), 45–60 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Dieci and C. Elia, “Periodic orbits for planar piecewise smooth systems with a line of discontinuity,” J. Dynam. Differential Equations 26 (4), 1049–1078 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. R. A. Gouveia, J. Llibre, D. D. Novaes, and C. Pessoa, “Piecewise smooth dynamical systems: persistence of periodic solutions and normal forms,” J. Differential Equations 260 (7), 6108–6129 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Dieci and C. Elia, “Periodic orbits for planar piecewise smooth systems with a line of discontinuity,” J. Dynam. Differential Equations 26 (4), 1049–1078 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Iwatani and S. Hara, “Stability tests and stabilization for piecewise linear systems based on poles and zeros of subsystems,” Automatica J. IFAC 42 (10), 1685–1695 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Llibre, A. C. Mereu, and D. D. Novaes, “Averaging theory for discontinuous piecewise differential systems,” J. Differential Equations 258 (11), 4007–4032 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. J.-Y. Su, X. Wang, and K.-Y. Cai, “Periodic orbit analysis of switched linear systems,” in International Conference on Automation and Logistics, 2007 (2007), pp. 1425–1430.

    Chapter  Google Scholar 

  23. A. Bacciotti, “Stability control and recurrent switching rules,” Internat. J. Robust Nonlinear Control 23 (6), 663–680 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Bacciotti and L. Mazzi, “Stabilisability of nonlinear systems by means of time-dependent switching rules,” Internat. J. Control 83 (4), 810–815 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Perez, F. Benitez, and J. B. Garcia-Gutierrez, “A method for stabilizing continuous-time switched linear systems,” Nonlinear Anal. Hybrid Syst. 33, 300–310 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. D. Thuan and L. V. Ngoc, “Robust stability and robust stabilizability for periodically switched linear systems,” Appl. Math. Comput. 361, 112–130 (2019).

    MathSciNet  MATH  Google Scholar 

  27. A. E. Aroudi, M. Debbat, and L. Martinez-Salamero, “Poincaré maps modeling and local orbital stability analysis of discontinuous piecewise affine periodically driven systems,” Nonlinear Dynam. 50 (3), 431–445 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Fenchel, “Über Krümmung und Windung geschlossener Raumkurven,” Math. Ann. 101 (1), 238–252 (1929).

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Borsuk, “Sur la courbure totale des courbes fermées,” Ann. Soc. Polon. Math. 20, 251–265 (1947).

    MathSciNet  MATH  Google Scholar 

  30. A. O. Ignatyev, “Bounds for the periods of periodic solutions of ordinary differential equations,” Ukrainian Math. J. 67 (11), 1773–1777 (2016).

    Article  MathSciNet  Google Scholar 

  31. A. M. Lyapunov, “Stability of motion: general problem,” Internat. J. Control 55 (3), 701–767 (1992).

    Article  Google Scholar 

  32. A. Wintner, “On the non-existence of conjugate points,” Amer. J. Math. 73, 368–380 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. O. Ignatyev, “On the Lyapunov type inequality,” Russian Math. (Iz. VUZ)] 64 (6), 16–23 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Ignatyev.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 94–103 https://doi.org/10.4213/mzm13801.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatyev, A.O. On Some Properties of Solutions of Switched Differential Equations. Math Notes 114, 77–84 (2023). https://doi.org/10.1134/S0001434623070076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623070076

Keywords

Navigation