Skip to main content
Log in

Partial Integral Operators on Banach–Kantorovich Spaces

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, we study partial integral operators on Banach–Kantorovich spaces over a ring of measurable functions. We obtain a decomposition of the cyclic modular spectrum of a bounded modular linear operator on a Banach–Kantorovich space in the form of a measurable bundle of spectra of bounded operators on Banach spaces. The classical Banach spaces with mixed norm are endowed with the structure of Banach–Kantorovich modules. We use such representations to show that every partial integral operator on a space with a mixed norm can be represented as a measurable bundle of integral operators. In particular, we show the cyclic compactness of such operators and, as an application, prove the Fredholm \(\nabla\)-alternative. We also give an example of a partial integral operator with a nonempty cyclically modular discrete spectrum, while its modular discrete spectrum is an empty set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Gutman, “Banach fiberings in the theory of lattice-normed spaces,” in Order-Compatible Linear Operators, Trudy Inst. Mat. (Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1995), Vol. 29, pp. 63–211 [in Russian].

    Google Scholar 

  2. I G. Ganiev, “Description of bounded operators in Banach–Kantorovich spaces,” in Actual Problems of Applied and Theoretical Mathematics (Samarkand, 1997), pp. 3–4 [in Russian].

    Google Scholar 

  3. A. G. Kusraev, “Boolean-valued analysis of duality of extended modules,” Sov. Math. Dokl. 26 (5), 732–735 (1982).

    MathSciNet  MATH  Google Scholar 

  4. A. G. Kusraev, Vector Duality and Its Applications (Nauka, Novosibirsk, 1985) [in Russian].

    MATH  Google Scholar 

  5. A. G. Kusraev, Dominated Operators (Nauka, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  6. I. G. Ganiev and K. K. Kudaybergenov, “Measurable bundles of compact operators,” Methods Funct. Anal. Topology 7 (4), 1–5 (2001).

    MathSciNet  MATH  Google Scholar 

  7. K. Kudaybergenov and F. Mukhamedov, “Spectral decomposition of self-adjoint cyclically compact operators and partial integral equations,” Acta Math. Hungar. 149 (2), 297–305 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Albeverio and Sh. Alimov, “On some integral equations in Hilbert space with an application to the theory of elasticity,” Integral Equations Operator Theory 55 (2), 153–168 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. M. Appell, A. S. Kalitvin, and P. P. Zabrejko, Partial Integral Operators and Integro-Differential Equations (New York, Marcel Dekker, 2000).

    Book  MATH  Google Scholar 

  10. A. S. Kalitvin and V. A. Kalitvin, “Linear operators and partial differential equations,” in Proceeding of Crimea Autumn Mathematical School-Symposium, Contemporary Mathematics, Fundamental Directions (Peoples’ Friendship University of Russia, Moscow, 2019), Vol. 65, pp. 390–433 [in Russian].

    Google Scholar 

  11. J. M. Appell, I. A. Eletskikh, and A. S. Kalitvin, “A note on the Fredholm property of partial integral equations of Romanovskij type,” J. Integral Equations Appl. 16 (1), 25–32 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Romanovsky, “Sur une classe d’équations intégrales linéaires,” Acta Math. 59 (1), 99–208 (1932).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. K. Kudaybergenov and A. D. Arziev, “The spectrum of an element in a Banach–Kantorovich algebra over a ring of measurable functions,” Adv. Oper. Theory 7 (1), 2–15 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. Kh. Eshkabilov and R. R. Kucharov, “Partial integral operators of Fredholm type on Kaplansky–Hilbert module over \(L_0\),” Vladikavkaz. Mat. Zh. 23 (3), 80–90 (2021).

    MathSciNet  MATH  Google Scholar 

  15. L. V. Kantorovich, “On a class of functional equations,” Dokl. Akad. Nauk SSSR 4 (5), 211–216 (1936).

    Google Scholar 

  16. M. A. Pliev and X. Fang, “Narrow orthogonally additive operators in lattice-normed spaces,” Sib. Math. J. 58 (1), 134–141 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Abasov and M. Pliev, “Dominated orthogonally additive operators in lattice-normed spaces,” Adv. Oper. Theory 4 (1), 251–264 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Aydin, E. Yu. Emelyanov, N. Erkursun Ozcan, and M. A. A. Marabeh, “Compact-like operators in lattice-normed spaces,” Indag. Math. (N. S.) 29 (2), 633–656 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Dzhusoeva, M. S. Moslehian, M. Pliev, and M. Popov, “Operators taking values in Lebesgue–Bochner spaces,” Proc. Amer. Math. Soc. 151 (7).

    MathSciNet  MATH  Google Scholar 

  20. M. A. Pliev, F. Polat, and M. R. Weber, “Narrow and \(C\)-compact orthogonally additive operators in lattice-normed spaces,” Results Math. 74 (2), 19 (2019).

    MathSciNet  MATH  Google Scholar 

  21. M. Pliev and F. Sukochev, “The Kalton and Rosenthal type decomposition of operators in Köthe–Bochner spaces,” J. Math. Anal. Appl. 500 (2), 124594 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. I. Levin, Convex Analysis in Spaces of Measurable Functions and Its Applications in Mathematics and Economics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  23. I. G. Ganiev and K. K. Kudaybergenov, “Banach theorem on inverse operator in Banach–Kantorovich spaces,” Vladikavkaz. Mat. Zh. 6 (3), 21–25 (2004).

    MathSciNet  Google Scholar 

  24. I. G. Ganiev and K. K. Kudaybergenov, “Finite-dimensional modules over a ring of measurable functions,” Uzb. Mat. Zh., No. 4, 3–9 (2004).

    MathSciNet  Google Scholar 

  25. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  26. V. B. Korotkov, Integral Operators (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  27. W. Rudin, Functional Analysis (McGraw-Hill, New York, 1991).

    MATH  Google Scholar 

  28. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis (Academic Press, New York–London, 1980).

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referee for valuable remarks and constructive suggestions that have helped to improve the quality of the presented investigation and pretty much organize the paper following the requirements of the journal.

Funding

This work of the second author was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-02-2022-896).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Arziev.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 18–37 https://doi.org/10.4213/mzm13703.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arziev, A.D., Kudaybergenov, K.K., Orinbaev, P.R. et al. Partial Integral Operators on Banach–Kantorovich Spaces. Math Notes 114, 15–29 (2023). https://doi.org/10.1134/S0001434623070027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623070027

Keywords

Navigation