Skip to main content
Log in

Analog of Schoenberg’s Theorem for \(a\)-Conditionally Negative Definite Matrix-Valued Kernels

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Schoenberg’s classical 1938 theorem asserts that, given a function \(\rho\colon G\times G\to\mathbb{C}\), the function \(\exp(-t\rho)\) is a positive definite kernel on \(G\times G\) for any \(t>0\) if and only if the kernel \(\rho\) is Hermitian and negative definite on \(G\times G\). An analog of this theorem for matrices was essentially proved by C. Löwner in 1966. Recently (in 2021), C. Dörr and M. Schlather obtained an analog of Schoenberg’s theorem for real matrix-valued functions \(\rho(x)\), \(x\in \mathbb{R}^d\). This analog refers to conditionally negative definite matrix-valued functions. In the present paper, \(a\)-conditionally negative definite matrix-valued kernels \(\rho\) on \(G\times G\) for which an analog of Schoenberg’s theorem holds are introduced and studied. The following more general problem is also considered: for what functions \(f\) and \(g\) and matrix-valued kernels \(\rho\) on \(G\times G\) is the function \(f(tg(\rho))\) a positive definite matrix-valued kernel on \(G\times G\) for any \(t>0\)? Necessary conditions, sufficient conditions, and examples of such functions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the book [6] on matrix theory, such matrices are called positive semidefinite.

  2. In [6], such matrices are called positive definite.

References

  1. I. J. Schoenberg, “Metric spaces and completely monotone functions,” Ann. of Math. (2) 39 (2), 811–841 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  2. I. J. Schoenberg, “Metric spaces and positive definite functions,” Trans. Amer. Math. Soc. 44 (3), 522–536 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Lowner, “On schlicht-monotonic functions of higher order,” J. Math. Anal. Appl. 14, 320–325 (1966).

    Article  MathSciNet  Google Scholar 

  4. C. Dörr and M. Schlather, Characterization Theorems for Pseudo-Variagrams, arXiv: 2112.02595.

    Google Scholar 

  5. C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, in Grad. Texts in Math. (Springer- Verlag, New York, 1984), Vol. 100.

    Book  MATH  Google Scholar 

  6. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge, 1986).

    Google Scholar 

  7. N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions in Banach Spaces (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  8. R. A. Horn, “On infinitely divisible matrices, kernels, and functions,” Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8, 219–230 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Dörr and M. Schlather, Covariance Models for Multivariate Random Fields Resulting from Pseudo Cross-Variograms, arXiv: pdf/2207.02839v1.pdf.

    MATH  Google Scholar 

  10. C. Ma, “Vector random fields with second-order moments or second-order increments,” Stoch. Anal. Appl. 29 (2), 197–215 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge Univ. Press, Cambridge, 1994).

    MATH  Google Scholar 

  12. C. Berg, J. Mateu, and E. Porcu, “The Dagum family of isotropic correlation functions,” Bernoulli 14 (4), 1134–1149 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions. Theory and Applications, in De Gruyter Stud. in Math. (De Gruyter, Berlin, 2010), Vol. 37.

    MATH  Google Scholar 

  14. C. Berg, “Stieltjes–Pick–Bernstein–Schoenberg and their connection to complete monotonicity,” in Positive Definite Functions: from Schoenberg to Space-Time Challenges, Ed. by J. Mateu and E. Porcu (Editorial Universitat Jaume I, 2008), pp. 15–45.

    Google Scholar 

  15. R. Bhatia and T. Jain, “On some positive definite functions,” Positivity 19 (4), 903–910 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. P. Zastavnyi and A. Manov, “On the Positive Definiteness of Some Functions Related to the Schoenberg Problem,” Math. Notes 102 (3), 325–337 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. V. Widder, The Laplace Transform (Princeton Univ. Press, Princeton, 1941).

    MATH  Google Scholar 

  18. N. I. Akhiezer, The Classical Moment Problem and Some Related Topics in Analysis (Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1961) [in Russian].

    MATH  Google Scholar 

  19. Z. Sasvari, Multivariate Characteristic and Correlation Functions, in De Gruyter Stud. in Math. (De Gruyter, Berlin, 2013), Vol. 50.

    Book  MATH  Google Scholar 

  20. V. A. Menegatto and C. P. Oliveira, “Matrix valued positive definite kernels related to the generalized Aitken’s integral for Gaussians,” Constr. Math. Anal. 4 (4), 384–399 (2021).

    MathSciNet  MATH  Google Scholar 

  21. I. I. Gikhman and A. V. Skorokhod, Theory of Random Processes, Vol. 1 (Nauka, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zastavnyi.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 81–93 https://doi.org/10.4213/mzm13758.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zastavnyi, V.P. Analog of Schoenberg’s Theorem for \(a\)-Conditionally Negative Definite Matrix-Valued Kernels. Math Notes 114, 66–76 (2023). https://doi.org/10.1134/S0001434623070064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623070064

Keywords

Navigation