Skip to main content
Log in

Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and \(q\)-Bessel Fourier Transform

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Necessary and sufficient conditions for a function \(f\) to belong to the generalized Lipschitz classes \(H^{m,\omega}_{q,\nu}\) and \(h^{m,\omega}_{q,\nu}\) for fractional \(m\) are given in terms of its \(q\)-Bessel–Fourier transform \(\mathcal F_{q,\nu}(f)\). Dual results are considered as well. An analog of the Titchmarsh theorem for fractional-order differences is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, in Pure and Appl. Math. (Academic Press, New York–London, 1971), Vol. 40.

    Book  MATH  Google Scholar 

  2. N. K. Bary and S. B. Stechkin, “Best approximations and differential properties of two conjugate functions,” in Tr. Mosk. Mat. Obs. (GITTL, Moscow, 1956), Vol. 5, pp. 483–522.

    Google Scholar 

  3. F. Móricz, “Absolutely convergent Fourier integrals and classical function spaces,” Arch. Math. (Basel) 91 (1), 49–62 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. S. Volosivets, “Fourier transforms and generalized Lipschitz classes in uniform metric,” J. Math. Anal. Appl. 383 (2), 344–352 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. P. Boas, Integrability Theorems for Trigonometric Transforms (Springer- Verlag, New York, 1967).

    Book  MATH  Google Scholar 

  6. F. Móricz, “Absolutely convergent Fourier series and function classes,” J. Math. Anal. Appl. 324 (2), 1168–1177 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Tikhonov, “Smoothness conditions and Fourier series,” Math. Inequal. Appl. 10 (2), 229–242 (2007).

    MathSciNet  MATH  Google Scholar 

  8. E. M. Berkak, E. M. Loualid, and R. Daher, “Boas-type theorems for the \(q\)-Bessel Fourier transform,” Anal. Math. Phys. 11 (3) (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Titchmarsh, Introduction to the Theory of Fourier Integrals (Chelsea Publishing Co., New York, 1986).

    Google Scholar 

  10. A. Achak, R. Daher, L. Dhaouadi, and E. M. Loualid, “An analog of Titchmarsh’s theorem for the \(q\)-Bessel transform,” Ann. Univ. Ferrara Sez. VII Sci. Mat. 65 (1), 1–13 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Gasper and M. Rahman, Basic Hypergeometric Series, in Encyclopedia of Math. and Its Appl. (Cambridge Univ. Press, Cambridge, 1990), Vol. 35.

    MATH  Google Scholar 

  12. V. Kac and P. Cheung, Quantum Calculus (Springer, New York, 2002).

    Book  MATH  Google Scholar 

  13. T. H. Koornwinder and R. F. Swarttouw, “On \(q\)-analogues of the Fourier and Hankel transforms,” Trans. Amer. Math. Soc. 333 (1), 445–461 (1992).

    MathSciNet  MATH  Google Scholar 

  14. L. Dhaouadi, A. Fitouhi, and J. El Kamel, “Inequalities in \(q\)-Fourier analysis,” JIPAM. J. Inequal. Pure Appl. Math. 7 (5), 171 (2006).

    MathSciNet  MATH  Google Scholar 

  15. L. Dhaouadi, “On the \(q\)-Bessel Fourier transform,” Bull. Math. Anal. Appl. 5 (2), 42–60 (2013).

    MathSciNet  MATH  Google Scholar 

  16. A. Fitouhi and L. Dhaouadi, “Positivity of the generalized translation associated with the \(q\)-Hankel transform,” Constr. Approx. 34 (3), 435–472 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Izumi and S.-I. Izumi, “Lipschitz classes and Fourier coefficients,” J. Math. Mech. 18 (9), 857–870 (1969).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the referee for valuable remarks, which have helped us to improve the exposition.

Funding

The first author’s research was supported by the Development Program of the Regional Scientific-Educational Center “Mathematics for Future Technology” (project no. 075-02-2023-949).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Volosivets.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 68–80 https://doi.org/10.4213/mzm13467.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volosivets, S.S., Krotova, Y.I. Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and \(q\)-Bessel Fourier Transform. Math Notes 114, 55–65 (2023). https://doi.org/10.1134/S0001434623070052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623070052

Keywords

Navigation