Skip to main content
Log in

Naimark Problem for a Fractional Ordinary Differential Equation

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For a fractional ordinary differential equation, we consider a problem where the boundary conditions are given in the form of linear functionals. This permits covering a fairly broad class of linear local and nonlocal conditions. The fractional derivative is understood in the sense of Gerasimov–Caputo. A necessary and sufficient condition for the unique solvability of the problem is obtained. A representation of the solution via special functions is found. A theorem on the existence and uniqueness of the solution is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Nakhushev, Fractional Calculus and Its Applications (Fizmatlit, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  2. A. A. Kilbas, Theory and Applications of Fractional Differential Equations (A Course of Lectures), Methodological School-Conference “Mathematical Physics and Nanotechnology” (Samara, 2009) [in Russian].

    Google Scholar 

  3. M. M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  4. K. B. Oldham and J. Spanier, The Fractional Calculus (Academic Press, New York–London, 1974).

    MATH  Google Scholar 

  5. R. L. Bagley and P. J. Torvik, “Fractional calculus in the transient analysis of viscoelastically damped structures,” AIAA Journal 23 (6), 918–925 (1985).

    Article  MATH  Google Scholar 

  6. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987) [in Russian].

    MATH  Google Scholar 

  7. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley, New York, 1993).

    MATH  Google Scholar 

  8. I. Podlubny, “Fractional Differential Equations,” in Math. in Sci. and Eng. (Academic Press, San Diego, CA, 1999), Vol. 198.

    MATH  Google Scholar 

  9. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in North-Holland Math. Stud. (Elsevier, Amsterdam, 2006), Vol. 204.

    Book  MATH  Google Scholar 

  10. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, River Edge, NJ, 2000).

    Book  MATH  Google Scholar 

  11. A. V. Pskhu, Fractional Partial Differential Equations (Nauka, Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  12. V. V. Uchaikin, Fractional Derivative Method (Artishok, Ul’yanovsk, 2008) [in Russian].

    Google Scholar 

  13. J. H. Barrett, “Differential equations of non-integer order,” Canad. J. Math. 6 (4), 529–541 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, in Springer Monogr. in Math. (Springer, Heidelberg, 2014).

    Book  MATH  Google Scholar 

  15. M. M. Dzhrbashyan and A. B. Nersesyan, “Fractional derivatives and the Cauchy problem for differential equations of fractional order,” Izv. Akad. Nauk Armyan. SSR Ser. Mat. 3 (1), 3–29 (1968).

    MathSciNet  Google Scholar 

  16. M. M. Dzhrbashyan, “A boundary value problem for a Sturm–Liouville type differential operator of fractional order,” Izv. Akad. Nauk Armyan. SSR Ser. Mat. 5 (2), 71–96 (1970).

    MathSciNet  Google Scholar 

  17. I. Ozturk, “On the theory of fractional differential equation,” Reports of Adyghe (Circassian) International Academy of Sciences 3 (2), 35–39 (1998).

    Google Scholar 

  18. N. Hayek, J. Trujillo, M. Rivero, B. Bonilla, and J. C. Moreno, “An extension of Picard–Lindelöff theorem to fractional differential equations,” Appl. Anal. 70 (3–4), 347–361 (1999).

    MathSciNet  MATH  Google Scholar 

  19. A. V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order,” Sb. Math. 202 (4), 571–582 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Tamarkin, “Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions,” Math. Z. 27 (1), 1–54 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  21. Alexandre Smogorshewsky, “Les fonctions de Green des systèmes différentiels linéaires dans un domaine à une seule dimension,” Rec. Math. [Mat. Sbornik] N. S. 7(49) (1), 179–196 (1940).

    MathSciNet  MATH  Google Scholar 

  22. M. A. Naimark, Linear Differential Operators (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  23. E. Kamke, Differentialgleichungen. I: Gewöhnliche Differentialgleichungen (Geest und Portig, Leipzig, 1969).

    MATH  Google Scholar 

  24. L. Kh. Gadzova, “A generalized boundary value problem for a second-order differential equation with a fractional derivative,” Dokl. Adygsk. (Cherkessk.) Mezhdunarodn. Akad. Nauk 21 (4), 10–14 (2021).

    Google Scholar 

  25. L. Kh. Gadzova, “Generalized boundary value problem for a linear ordinary differential equation with a fractional discretely distributed differentiation operator,” Bull. Karaganda Univ. Math. Ser. 106 (2), 108–116 (2022).

    Article  MathSciNet  Google Scholar 

  26. L. Kh. Gadzova, “Generalized boundary problem for an ordinary differential equation of fractional order,” Chelyab. Fiz.-Mat. Zh. 7 (1), 20–29 (2022).

    MathSciNet  MATH  Google Scholar 

  27. O. G. Novozhenova, Biography and Scientific Work of Alexei Nikiforovich Gerasimov. On Linear Operators, Viscoelasticity, Eleutherosis, and Fractional Derivatives (Pero, Moscow, 2018) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kh. Gadzova.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 114, pp. 195–202 https://doi.org/10.4213/mzm14008.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadzova, L.K. Naimark Problem for a Fractional Ordinary Differential Equation. Math Notes 114, 159–164 (2023). https://doi.org/10.1134/S0001434623070179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623070179

Keywords

Navigation