Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 23, 2023

Fine-tuning the circadian system with light treatment for Parkinson’s disease: an in-depth, critical review

  • Gregory L. Willis EMAIL logo and Stuart M. Armstrong

Abstract

Late in the twentieth century, interest intensified regarding the involvement of the circadian system in the aetiology and treatment of Parkinson’s disease (PD). It has been envisaged that this approach might provide relief beyond the limited benefits and severe side effects achieved by dopamine (DA) replacement. In the first clinical article, published in 1996, polychromatic light was used to shift the circadian clock as it is considered to be the most powerful zeitgeber (time keeper) that can be implemented to realign circadian phase. Since that time, 11 additional articles have implemented light treatment (LT) in various forms as an adjuvant to DA replacement. In spite of the growing interest in this area, the systematic exploration of LT in PD has been stymied by several methodological factors. Such factors include time of LT presentation, duration of studies undertaken, frequency of light employed, dose of light prescribed and relevance of experimental design to the prolonged course of the illness. On this basis, it is the purpose of this review to provide an in-depth examination of these papers, and the underlying preclinical work, to provide critique, thereby giving direction for future studies in therapeutic applications of LT for PD. Consideration of this collective work may serve to carve a path for future research and thereby improve the lives of those suffering from this debilitating disorder.


Corresponding author: Gregory L. Willis, The Bronowski Institute of Behavioural Neuroscience, 40 Davy Street, Woodend, VIC 3442, Australia, E-mail:
Stuart M. Armstrong: Deceased.
  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abilio, V.C., Vera, J.A.R.Jr., Ferreira, L.S.M., Duarte, C.R.M., Carvalho, R.C., Grassi, C., Martins, C.R., Torres-Leite, D., Bignotto, M., Tufik, S., et al.. (2002). Effects of melatonin on orofacial movements in rats. Psychopharmacology (Berl.) 161: 340–347, https://doi.org/10.1007/s00213-002-1081-7.Search in Google Scholar PubMed

Ahn, A.H., Kim, M., Park, S., Jang, W., Park, J., Oh, E., Cho, J.W., Kim, J.S., and Youn, J. (2020). Prolonged release melatonin in Parkinson’s disease patients with a poor sleep quality: a randomised trial. Park. Relat. Disord. 75: 50–54, https://doi.org/10.1016/j.parkreldis.2020.03.029.Search in Google Scholar PubMed

Artemenko, A.R. and Levin, L. (1996). The phototherapy for Parkinson’s patients. Zh Nevrol Psikhiatr Im SS Korsakova 96: 63–66.Search in Google Scholar

Balestrino, R. and Schapira, A.H.V. (2020). Parkinson’s disease. Eur. J. Neurol. 27: 27–42, https://doi.org/10.1111/ene.14108.Search in Google Scholar PubMed

Bolitho, S.J., Naismith, S.L., Rajaratnam, S.M.W., Grunstein, R.R., Hodges, J.R., Termening, Z., Rogers, N., and Lewis, S.J.G. (2014). Disturbance in melatonin secretion and circadian sleep-wake regulation in Parkinson’s disease. Sleep Med. 15: 342–347, https://doi.org/10.1016/j.sleep.2013.10.016.Search in Google Scholar PubMed

Brainard, G.C., Sliney, D., Hanifin, J.P., Glickman, G., Byrne, B., Greeson, J.M., Jasser, S., Gerner, E., and Rollag, M.D. (2008). Sensitivity of the human circadian system to short-wavelength (420-nm) light. J. Biol. Rhythm. 23: 379–386, https://doi.org/10.1177/0748730408323089.Search in Google Scholar PubMed

Bromundt, V., Wirz-Justice, A., Boutellier, M., winter, S., Haberstroh, M., Terman, M., and Munch, M. (2019). Effects of dawn-dusk simulation on circadian rest-activity cycles, sleep, mood and well-being in dementia patients. Exp. Gerontol. 124: 110641, https://doi.org/10.1016/j.exger.2019.110641.Search in Google Scholar PubMed

Burton, S., Daya, S., and Potgeiter, B. (1991). Melatonin modulates apomorphine-induced rotational behaviour. Experientia 15: 466–469, https://doi.org/10.1007/bf01959946.Search in Google Scholar PubMed

Charcot, J.M. (1881). Lectures on Diseases of the nervous system. New Sydenham, London.Search in Google Scholar

Catala, M.D., Canete-Nicolas, C., Iradi, A., Tarazona, J.M., Tormos, J.M., and Pascual-Leone, A. (1997). Melatonin levels in Parkinson’s disease. Exp. Gerontol. 32: 553–558, https://doi.org/10.1016/s0531-5565(96)00173-8.Search in Google Scholar PubMed

Chen, Y. and Yu, Z. (2021). Association of polypharmacy and Parkinson’s disease prevalence. Bratisl. Lek. Listy 122: 158–160, https://doi.org/10.4149/bll_2021_024.Search in Google Scholar

Chen, H., Schernhammer, E., Schwarzchild, M.A., and Ascherio, A. (2006). A prospective study of night shift work, sleep duration, and risk of Parkinson’s disease. Am. J. Epidemiol. 163: 726–730, https://doi.org/10.1093/aje/kwj096.Search in Google Scholar PubMed

Colwell, C.S. (2021). Defining circadian disruption in neurodegenerative diseases. J. Clin. Invest. 131: e148288, https://doi.org/10.1172/JCI148288.Search in Google Scholar PubMed PubMed Central

Dagan, M., Herman, T., Bernad-Elezari, H., Gazit, E., Maidan, I., Giladi, N., Mirelman, A., Manor, B., and Hausdorff, J. (2021). Dopaminergic therapy and prefrontal activation during waking in individuals with Parkinson’s disease: does the levodopa overdose hypothesis extend to gait? J. Neurol. 268: 658–668, https://doi.org/10.1007/s00415-020-10089-x.Search in Google Scholar PubMed

Danguir, J. and Nicolaidis, S. (1980). Cortical activity and sleep in the rat lateral hypothalamic syndrome. Brain Res. 185: 305–321, https://doi.org/10.1016/0006-8993(80)91070-7.Search in Google Scholar PubMed

Datieva, V.K., Rosinskaia, A.V., and Levin, O.S. (2013). The use of melatonin in the treatment of chronic fatigue syndrome and circadian rhythm disorders in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 113: 77–81.Search in Google Scholar

Dee, W., Nozzle-Firth, K., and Koon, M.S. (2019). Parkinson’s disease: diagnosis and appreciation of comorbidities. Handb. Clin. Neurol. 167: 257–277, https://doi.org/10.1016/B978-0-12-804766-8.00014-5.Search in Google Scholar PubMed

de Pedro Cuesta, J. and Stairs, L. (1991). Parkinson’s disease incidence: magnitude, comparability, time trends. Acta Neurol. Scand. 84: 382–388, https://doi.org/10.1111/j.1600-0404.1991.tb04974.x.Search in Google Scholar PubMed

Dijk, D.J., Boulos, Z., Eastman, C.I., Lewy, A.J., Campbell, S.S., and Terman, M. (1995). Light treatment for sleep disorders: consensus report. II. Basic properties of circadian physiology and sleep regulation. J. Biol. Rhythm. 10: 113–125, https://doi.org/10.1177/074873049501000204.Search in Google Scholar PubMed

Distler, M., Schlachetzki, J.C., Kohl, Z., Winkler, J., and Schenk, T. (2016). Paradoxical kinesia in Parkinson’s disease revisited: anticipation of temporal constraints is critical. Neuropsychologica 86: 38–44, https://doi.org/10.1016/j.neuropsychologia.2016.04.012.Search in Google Scholar PubMed

Dubocovich, M.L. (1984). Modulation of [3H] dopamine release from rabbit retina. Fed. Proc. 43: 2714–2718.Search in Google Scholar

Endo, T., Matsumura, R., Tokuda, I.T., Yoshikawa, T., Shigeyoshi, Y., Node, K., Sakoda, S., and Akashi, M. (2020). Bright light improves sleep in patients with Parkinson’s disease: possible role of circadian restoration. Sci. Rep. 10: 7982, https://doi.org/10.1038/s41598-020-64645-6.Search in Google Scholar PubMed PubMed Central

Fanning, S., Selkoe, D., and Dettmer, U. (2020). Proteinopathy or lipidopathy? npj Parkinson’s Dis. 6: 3, https://doi.org/10.1038/s41531-019-0103-7.Search in Google Scholar PubMed PubMed Central

Fayyad, M., Salim, S., Majbour, N., Erskine, D., Stoops, E., Mollenhauer, B., and El-Agnaf, O.M.A. (2019). Parkinson’s disease biomarkers based on α-synuclein. J. Neurochem. 150: 626–636, https://doi.org/10.1111/jnc.14809.Search in Google Scholar PubMed

Fertl, E., Auff, E., Dopplebauer, A., and Waldhauser, F. (1991). Circadian secretion pattern of melatonin in Parkinson’s disease. J. Neural. Transm. 3: 41–47, https://doi.org/10.1007/bf02251135.Search in Google Scholar PubMed

Fertl, E., Auff, E., Dopplebauer, A., and Waldhauser, F. (1993). Circadian secretion pattern of melatonin in novo Parkinson’s patient. Evidence for phase shifting properties of L-dopa. J. Neural. Transm. 5: 227–234, https://doi.org/10.1007/bf02257677.Search in Google Scholar PubMed

Fifel, K. (2017). Alterations of the circadian system in Parkinson’s disease patients. Mov. Disord. 32: 682–692, https://doi.org/10.1002/mds.26865.Search in Google Scholar PubMed

Fifel, K. and De Boer, T. (2014). The central clock in patients with Parkinson’s disease. JAMA Neurol. 71: 1456–1457.10.1001/jamaneurol.2014.2711Search in Google Scholar PubMed PubMed Central

Fifel, K. and De Boer, T. (2021). The circadian system in Parkinson’s disease, multiple systems atrophy and progressive Supranuclear palsy. Handb. Clin. Neurol. 179: 301–313, https://doi.org/10.1016/B978-0-12-819975-6.00019-4.Search in Google Scholar PubMed

Fifel, K. and Videnovic, A. (2018). Light therapy in Parkinson’s disease: towards mechanism- based protocols. Trends Neurosci. 41: 252–254, https://doi.org/10.1016/j.tins.2018.03.002.Search in Google Scholar PubMed PubMed Central

Fifel, K. and Videnovic, A. (2019). Chronotherapies for Parkinson’s disease. Prog. Neurobiol. 174: 16–27, https://doi.org/10.1016/j.pneurobio.2019.01.002.Search in Google Scholar PubMed PubMed Central

Fifel, K. and Videnovic, A. (2020). Circadian alterations in patients with neurodegenerative diseases: neuropathological basis of underlying network mechanism. Neurobiol. Dis. 144: 105029, https://doi.org/10.1016/j.nbd.2020.105029.Search in Google Scholar PubMed

Fifel, K., Piggens, H., and DeBoer, T. (2015). Modelling sleep alterations in Parkinson’s disease: how close are we to valid translational animal models. Sleep Med. Rev. 25: 95–111, https://doi.org/10.1016/j.smrv.2015.02.005.Search in Google Scholar PubMed

Gilat, M., Jackson, A.C., Marshall, N.S., Hammond, D., Mullins, A.E., Hall, J.M., Fang, B.A.M., Yee, B.J., Wong, K.H., Grunstein, R.R., et al.. (2020). Melatonin for rapid eye movement sleep behaviour disorder in Parkinson’s disease: a randomised control trial. Mov. Disord. 35: 344–349, https://doi.org/10.1002/mds.27886.Search in Google Scholar PubMed PubMed Central

Hadjiconstantinou, M. and Neff, N.H. (1984). Catecholamine systems of the retina: a model for studying synaptic mechanism. Life 35: 1135–1147, https://doi.org/10.1016/0024-3205(84)90184-x.Search in Google Scholar PubMed

Hatter, S., Lucas, R.J., Mrosovky, N., Thompson, S., Douglas, R.H., Hankins, M.W., Lem, J., Biel, M., Hifmann, F., Foster, R.G., et al. (2003). Melanopsin ans rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 76–81.10.1038/nature01761Search in Google Scholar PubMed PubMed Central

Hennessy, M. and Hamblin, M.R. (2017). Photobiomodulation and the brain: a new paradigm. J. Opt. 19: 013003, https://doi.org/10.1088/2040-8986/19/1/013003.Search in Google Scholar PubMed PubMed Central

Huang, H.T., Huang, T.W., and Hong, C.T. (2021). Bright light therapy for Parkinson’s disease: a literature review and meta-analysis of randomised controlled trials. Biology 10: 1205, https://doi.org/10.3390/biology10111205.Search in Google Scholar PubMed PubMed Central

Huot, P. (2015). L-DOPA-induced dyskinesia, is striatal dopamine depletion a requisite? J. Neurol. Sci. 351: 9–12, https://doi.org/10.1016/j.jns.2015.02.041.Search in Google Scholar PubMed

Johnstone, D.M., Hamilton, C., Gordon, L.C., Moro, C., Torres, N., Nicklason, F., Stone, J., Benabid, A.-L., and Mitrofanis, J. (2021). Exploring the use of intracranial and extra-cranial (Remote) photobiomodulation devices in Parkinson’s disease: a comparison of direct and indirect systemic stimulations. J. Alzheimer’s Dis. 83: 1399–1413, https://doi.org/10.3233/jad-210052.Search in Google Scholar

Joyce, D.S., Feigl, B., Kerr, G., Roeder, L., and Zele, A.J. (2018). Melanopsin-mediated pupil function is impaired in Parkinson’s disease. Sci. Rep. 8: 7796, https://doi.org/10.1038/s41598-018-26078-0.Search in Google Scholar PubMed PubMed Central

Kakhaki, R.D., Ostadmohammadi, V., Kouchaki, E., Aghadavod, E., Bahmani, F., Tamtaji, O.R., Reiter, R.J., Mansournia, M.A., and Asemi, Z. (2020). Melatonin supplementation and the effects on clinical and metabolic status in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin. Neurol. Neurosurg. 195: 105878, https://doi.org/10.1016/j.clineuro.2020.105878.Search in Google Scholar PubMed

Laufer, L., Lang, E., Izso, L., and Nemeth, E. (2009). Psychophysiological effects of coloured in older adults. Light. Res. Technol. 41: 371–378, https://doi.org/10.1177/1477153509336803.Search in Google Scholar

Leng, Y., Blackwell, T., Cawthon, P.M., Ancoli-Israel, S., Stone, K.L., and Yaffe, K. (2020). Association of circadian abnormalities in older adults with an increased risk of developing Parkinson disease. JAMA Neurol. 77: 1270–1278, https://doi.org/10.1001/jamaneurol.2020.1623.Search in Google Scholar PubMed PubMed Central

Leng, Y., Musiek, E.S., Hu, K., Cappuccio, F.P., and Yaffe, K. (2019). Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 18: 307–318, https://doi.org/10.1016/s1474-4422(18)30461-7.Search in Google Scholar PubMed PubMed Central

Levin, L.L. and Artemenko, A.R. (1996). [Phototherapy in neurology and psychiatry. Zh Nevrol Psikhiatr Im SS Korsakova 96: 107–112.Search in Google Scholar

Lewy, A., J., Emens, J.S., Lefler, B., J., Yuhas, K., and Jackman, A.R. (2005). Melatonin entrains free-running blind people according to physiological dose-response curve. Chronobiol. Int. 22: 1093–1106, https://doi.org/10.1080/07420520500398064.Search in Google Scholar PubMed

Lewy, A.J., Sack, R.L., and Singer, C.M. (1985). Immediate and delayed effects of bright light on human melatonin production: shifting “dawn” and “dusk” shifts the dime light melatonin onset (DLMO). Ann. N. Y. Acad. Sci. 453: 253–259, https://doi.org/10.1111/j.1749-6632.1985.tb11815.x.Search in Google Scholar PubMed

Lewy, A.J., Sack, R.L., Miller, L.S., and Hoban, T.M. (1987). Antidepressant and circadian phase-shifting effects of light. Science 16: 352–354, https://doi.org/10.1126/science.3798117.Search in Google Scholar PubMed

Maggio, R., Vaglini, F., Rossi, M., Fasciani, I., Pietrantoni, I., Marampon, F., Corsini, G., U., Scarselli, M., and Millan, M.J. (2019). Parkinson’s disease and light: the bright and the dark sides. Brain Res. Bull. 150: 290–296, https://doi.org/10.1016/j.brainresbull.2019.06.013.Search in Google Scholar PubMed

Mantovani, S., Smith, S.S., Gordon, R., and O’Sullivan, J.D. (2018). An overview of sleep and circadian dysfunction in Parkinson’s disease. J. Sleep Res. 27: e12673, https://doi.org/10.1111/jsr.12673.Search in Google Scholar PubMed

Marshall, J.F., Turner, B.H., and Teitelbaum, P. (1971). Sensory neglect produced by lateral hypothalamic damage. Science 174: 523–525, https://doi.org/10.1126/science.174.4008.523.Search in Google Scholar PubMed

Marshall, J.F. and Teitelbaum, P. (1974). Further analysis of sensory inattention following lateral hypothalamic damage in rats. J. Comp. Physiol. Psychol. 86: 375–395, https://doi.org/10.1037/h0035941.Search in Google Scholar PubMed

Martino, J.K., Freelance, C.B., and Willis, G.L. (2018). The effect of light exposure on insomnia and nocturnal movement in Parkinson’s disease: an open label, retrospective, longitudinal study. Sleep Med. 44: 24–31, https://doi.org/10.1016/j.sleep.2018.01.001.Search in Google Scholar PubMed

Medeiros, C.A.M., Carvalhedo de Bruin, P.F., Lopes, L.A., Magalhaes, M.C., de Lourdes Sebra, M., and sales de Bruin, V.M. (2007). Effect of endogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. A randomized, double blind, placebo-controlled study. J. Neurol. 254: 459–464, https://doi.org/10.1007/s00415-006-0390-x.Search in Google Scholar PubMed

Mendoza, J. (2019). Circadian insights into the biology of depression: symptoms, treatments and animal models. Behav. Brain Res. 376: 112186, https://doi.org/10.1016/j.bbr.2019.112186.Search in Google Scholar PubMed

Meng, T., Zheng, Z.H., Tiu, T.T., and Lin, L. (2012). Contralateral retinal dopamine decrease and melatonin increase in progression of hemi-Parkinsonian rat. Neurochem. Res. 37: 1050–1056, https://doi.org/10.1007/s11064-012-0706-4.Search in Google Scholar PubMed

Michalak, E.E., Murray, G., Wilkinson, C., Dowrick, C., and Lam, R.W. (2007). A pilot study of adherence with light treatment for seasonal affective disorder. Psychiatr. Res. 15: 315–320, https://doi.org/10.1016/j.psychres.2006.05.005.Search in Google Scholar PubMed

Miller, D.B. and O’Callaghan, J.P. (2014). Biomarkers of Parkinson’s disease: present and future. Metabolism 64: S40–S46, https://doi.org/10.1016/j.metabol.2014.10.030.Search in Google Scholar PubMed PubMed Central

Montazerri, K., Faradic, M., Fekrazad, R., Akbarnejad, Z., Chaibakhsh, S., and Mahmoudian, S. (2021). Transcranial photobiomodulation in the management of brain disorders. J. Photochem. Photobiol. 221: 112207, https://doi.org/10.1016/j.jphotobiol.2021.112207.Search in Google Scholar PubMed

Nassan, M. and Videnovic, A. (2022). Circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 18: 7–24, https://doi.org/10.1038/s41582-021-00577-7.Search in Google Scholar PubMed

Obayashi, K., Saeki, K., Yamagami, Y., Kurumatani, N., Sugie, K., and Kataoka, H. (2021). Circadian activity rhythm in Parkinson’s disease: findings from the PHASE study. Sleep Med. 85: 8–14, https://doi.org/10.1016/j.sleep.2021.06.023.Search in Google Scholar PubMed

Oldham, M.A. and Ciraulo, D.A. (2014). Bright light therapy for depression: a review of its effects on the autonomic nervous system. Chronobiol. Int. 31: 305–319, https://doi.org/10.3109/07420528.2013.833935.Search in Google Scholar PubMed PubMed Central

Paus, S., Schmitz-Hübsch, T., Wüllner, U., Vogel, A., Klockgether, T., and Abele, M. (2007). Bright light therapy in Parkinson’s disease: a pilot study. Mov. Disord. 22: 1495–1498, https://doi.org/10.1002/mds.21542.Search in Google Scholar PubMed

Pajares, M., Rojo, A.I., Manda, G., Bosca, L., and Cuadrado, A. (2020). Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells 14: 1687, https://doi.org/10.3390/cells9071687.Search in Google Scholar PubMed PubMed Central

Parkinson, J. (1817). An essay on the shaking Palsy. Whittingham and Rowland, London.Search in Google Scholar

Perez-Lloret, S. and Cardinali, D.P. (2021). Melatonin as a chronobiotic and cytoprotective agent in Parkinson’s disease. Front. Pharmacol. 12: 650597, https://doi.org/10.3389/fphar.2021.650597.Search in Google Scholar PubMed PubMed Central

Pfeiffer, R.F. (2020). Autonomic dysfunction in Parkinson’s disease. Neurotherapeutics 17: 1464–1479, https://doi.org/10.1007/s13311-020-00897-4.Search in Google Scholar PubMed PubMed Central

Porras, G., De Deurwaerdere, P., Li, Q., Marti, M., Molrgenstern, R., Sohr, R., Bezard, E., Morari, M., and Meissner, W.G. (2014). L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci. Rep. 16: 3730, https://doi.org/10.1038/srep03730.Search in Google Scholar PubMed PubMed Central

Raymackers, J.-M., Andrade, M., Baey, E., Vanneste, M., and Evard, F. (2019). Bright light therapy with head-mounted device for anxiety, depression, sleepiness, and fatigue in patients with Parkinson’s disease. Acta Neurol. Belg. 119: 607–613, https://doi.org/10.1007/s13760-019-01214-3.Search in Google Scholar PubMed

Reichmann, H. (2017). Premotor diagnosis of Parkinson’s disease. Neurosci. Bull. 33: 526–534, https://doi.org/10.1007/s12264-017-0159-5.Search in Google Scholar PubMed PubMed Central

Richter, C. (1976). In: Blas, E.M. (Ed.). The psychobiology of Curt Richter. York Press, Inc., Baltimore.Search in Google Scholar

Romenets, S.R., Creti, L., Fichten, C., Bailes, S., Libman, E., Pelletier, A., and Postuma, R.B. (2013). Doxepin and cognitive behavioural therapy for insomnia in patients with Parkinson’s disease—a randomised study. Park. Relat. Disord. 19: 670–675.10.1016/j.parkreldis.2013.03.003Search in Google Scholar PubMed

Romeo, S., Viaggi, C., Di Camillo, D., Willis, A.W., Lozzi, L., Rocchi, C., Capannola, M., Aloisi, G., Vaglini, F., Maccarone, R., et al.. (2013). Bright light exposure reduces TH-positive dopamine neurones : implications of light pollution in Parkinson’s disease epidemiology. Sci. Rep. 3: 1395 https://doi.org/10.1038/srep01395.Search in Google Scholar PubMed PubMed Central

Rosenthal, N.E., Sack, D.A., Gillin, J.C., Lewy, A.J., Goodwin, F.K., Davenport, Y., Mueller, P.S., Newsome, D.A., and Wehr, T.A. (1974). Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch. Gen. Psychiatr. 41: 72–80, https://doi.org/10.1001/archpsyc.1984.01790120076010.Search in Google Scholar PubMed

Rush, A.J. and Siefert, S.E. (2009). Clinical issues in considering vagus nerve stimulation for treatment. Exp. Neurol. 219: 36–43, https://doi.org/10.1016/j.expneurol.2009.04.015.Search in Google Scholar PubMed

Rutten, S., Vriend, C., Smit, J.H., Berendse, H.W., van Sommeren, W., Hoogendoorn, A.W., Twisk, J.W.R., van der Werf, Y.D., and van den Heuvel, O.A. (2019). Bright light therapy for depression in Parkinson’s disease: a randomised controlled trial. Neurology 92: e1145–e1156, https://doi.org/10.1212/wnl.0000000000007090.Search in Google Scholar PubMed

Sacks, O. (1973). Awakenings: ISBN: 9781743039656; eBook: 19/03/1986. Picador, Doubleday, New York.Search in Google Scholar

Schapira, A.H.V., Chaudhuri, K.R., and Jenner, P. (2017). Non-motor features of Parkinson’s disease. Nat. Rev. Neurosci. 18: 435–450, https://doi.org/10.1038/nrn.2017.62.Search in Google Scholar PubMed

Shamir, E., Barak, Y., Shalman, I., Laudon, M., Zisapel, N., Tattasch, R., Elizur, A., and Weizman, R. (2001). Melatonin treatment for tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Arch. Gen. Psychiatr. 58: 1049–1052, https://doi.org/10.1001/archpsyc.58.11.1049.Search in Google Scholar PubMed

Sidewrowf, A., Concha-Marambio, L., Lafontant, D.-E., Farris, C.M., Ma, Y., Urenia, H., Alcalay, R.N., Chahine, L.M., Foroud, T., Galasko, D., et al.. (2023). Assessment of heterogeneity among participant in the Parkinson’s progression markers initiative cohort using a-synuclein seed amplification: a cross-sectional study. Lancet 22: 407–417.10.1016/S1474-4422(23)00109-6Search in Google Scholar PubMed PubMed Central

Smilowska, K., Wamelon, D.J., Schoutens, M.C., Meinders, M.J., and Bloem, B.R. (2019). Blue light therapy glasses in Parkinson’s disease: patients’ experience. Parkinson’s Dis. 2019: 1906271, https://doi.org/10.1155/2019/1906271.Search in Google Scholar PubMed PubMed Central

Striker, E.M. and Zigmond, M.J. (1973). Recovery of feeding and drinking by rats after intraventricular 6-hydroxydopamine of lateral hypothalamic lesions. Science 182: 717–721.10.1126/science.182.4113.717Search in Google Scholar PubMed

Sun, W., Yan, J., Wu, J., and Ma, H. (2022). Efficacy and safety of light therapy as a home treatment for motor and non-motor symptoms of Parkinson’s disease: a meta-analysis. Med. Sci. Mon. 28: e935074, https://doi.org/10.12659/MSM.935074.Search in Google Scholar PubMed PubMed Central

Tapias, V., Cannon, J.R., and Greenamyre, J.T. (2010). Melatonin potentiates neurodegeneration in a rat rotenone Parkinson’s disease model. J. Neurosci. Res. 88: 20–27.10.1002/jnr.22201Search in Google Scholar PubMed

Teitelbaum, P. and Epstein, A.N. (1962). The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol. Rev. 69: 74–90, https://doi.org/10.1037/h0039285.Search in Google Scholar PubMed

Terman, M. (2007). Evolving applications of light therapy. Sleep Med. Rev. 11: 497–507, https://doi.org/10.1016/j.smrv.2007.06.003.Search in Google Scholar PubMed

Trist, G.G., Hare, D.J., and Double, K.L. (2019). Oxidative stress in the aging substantia nigra and the aetiology of Parkinson’s disease. Aging Cell 18: e13031.10.1111/acel.13031Search in Google Scholar PubMed PubMed Central

Ungerstedt, U. (1970). Is interruption of the nigro-striatal dopamine system producing the “lateral hypothalamus syndrome”. Acta Physiol. Scand. 80: 35A–36A, https://doi.org/10.1111/j.1748-1716.1970.tb04858.x.Search in Google Scholar PubMed

Videnovic, A., Klerman, E.B., Wang, W., Marconi, A., Kuhta, T., and Zee, P.C. (2017). Timed light therapy for sleep and daytime sleepiness associated with Parkinson’s disease: a randomised clinical trial. JAMA Neurol. 74: 411–418, https://doi.org/10.1001/jamaneurol.2016.5192.Search in Google Scholar PubMed PubMed Central

Willis, G.L. (2008a). Parkinson’s disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev. Neurosci. 19: 245–316, https://doi.org/10.1515/revneuro.2008.19.4-5.245.Search in Google Scholar PubMed

Willis, G.L. (2008b). Intraocular microinjections repair experimental Parkinson’s disease. Brain Res. 1217: 119–131, https://doi.org/10.1016/j.brainres.2008.03.083.Search in Google Scholar PubMed

Willis, G.L., Endo, T., Sakoda, S., and Waldman, M. (2023). 10 Year study reveals circadian reset slows the degenerative process and provides symptomatic relief in Parkinson’s disease. (In preparation).Search in Google Scholar

Willis, G.L. and Armstrong, S.M. (1999). A therapeutic role for melatonin antagonism in experimental models of Parkinson’s disease. Physiol. Behav. 66: 785–795, https://doi.org/10.1016/s0031-9384(99)00023-2.Search in Google Scholar PubMed

Willis, G.L., Boda, J., and Freelance, C.B. (2018). Polychromatic light exposure as a therapeutic in the treatment and management of Parkinson’s disease: a controlled exploratory trial. Front. Neurol. 9: 741, https://doi.org/10.3389/fneur.2018.00741.Search in Google Scholar PubMed PubMed Central

Willis, G.L. and Freelance, C.B. (2018). The effect of intravitreal cholinergic drugs on motor control. Behav. Brain Res. 339: 232–238, https://doi.org/10.1016/j.bbr.2017.11.027.Search in Google Scholar PubMed

Willis, G.L., Kelly, M.A.K., and Kennedy, G.A. (2008). Compromised circadian function in Parkinson’s disease: enucleation augments disease severity in the unilateral model. Behav. Brain Res. 193: 37–47, https://doi.org/10.1016/j.bbr.2008.04.017.Search in Google Scholar PubMed

Willis, G.L., Moore, C., and Armstrong, S.M. (2012). A historical justification for and retrospective analysis of the systematic application of light therapy in Parkinson’s disease. Rev. Neurosci. 23: 199–226, https://doi.org/10.1515/revneuro-2011-0072.Search in Google Scholar PubMed

Willis, G.L. and Robertson, A.D. (2004). Recovery of experimental Parkinson’s disease with the melatonin analogues ML-23 and S-20928 in a chronic, bilateral 6-OHDA model: a new mechanism involving antagonism of the melatonin receptor. Pharmacol. Biochem. Behav. 79: 413–429, https://doi.org/10.1016/j.pbb.2004.08.011.Search in Google Scholar PubMed

Willis, G.L. and Robertson, A.D. (2005). Recovery of experimental Parkinson’s disease in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine treated marmoset with the melatonin analogue ML-23. Pharmacol. Biochem. Behav. 80: 9–26, https://doi.org/10.1016/j.pbb.2004.10.022.Search in Google Scholar PubMed

Willis, G.L. and Turner, J. (2007). Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: case series study. Chronobiol. Int. 24: 521–537, https://doi.org/10.1080/07420520701420717.Search in Google Scholar PubMed

Wink, B. and Harris, J. (2000). A model of the Parkinsonian visual system: support for the dark adaptation hypothesis. Vision Res. 40: 1937–1946, https://doi.org/10.1016/s0042-6989(00)00036-5.Search in Google Scholar PubMed

Wirz-Justice, A., Benedetti, F., and Terman, M. (2013). Chronotherapeutics for affective disorders. In: A clinician’s manual for light and wake therapy. S. Karger, Basel.10.1159/isbn.978-3-318-02091-5Search in Google Scholar

Yalcin, M., Mundorf, A., Thiel, F., Amatrain-Fernandez, S., Kalthoff, I.S., Beucke, J.C., Budde, H., Garthus-Niegel, S., Peterburs, J., and Relogio, A. (2022). It’s about time: the circadian network as time-keeper for cognitive functioning, locomotor activity and mental health. Front. Physiol. 13: 873237, https://doi.org/10.3389/fphys.2022.873237.Search in Google Scholar PubMed PubMed Central

Zeng, X., Geng, W., Jia, J., and Wang, Z. (2021). Advances in stem cells transplantation for the therapy of Parkinson’s disease. Curr. Stem Cell Res. Ther. 16: 958–969, https://doi.org/10.2174/1574888x16666210309153949.Search in Google Scholar

Zigmond, M.J., Acheson, A.L., Stachowiak, M.K., Strickerm, E.M., and Stricker, E.M. (1984). Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical Parkinsonism. Arch. Neurol. 41: 856–861, https://doi.org/10.1001/archneur.1984.04050190062015.Search in Google Scholar PubMed

Received: 2023-02-28
Accepted: 2023-06-30
Published Online: 2023-08-23
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2023-0026/html
Scroll to top button