Skip to main content
Log in

Mercury contamination in the tropical seabird community from Clipperton Island, eastern Pacific Ocean

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Mercury (Hg) pollution is a global problem affecting remote areas of the open ocean, but the bioaccumulation of this neurotoxic pollutant in tropical top predators remains poorly documented. The objective of this study was to determine Hg contamination of the seabird community nesting on Clipperton Island using blood and feathers to investigate short and longer-term contamination, respectively. We examined the significance of various factors (species, sex, feeding habitat [δ13C] and trophic position [δ15N]) on Hg concentrations in six seabird species. Among species, Great Frigatebirds had the highest Hg concentrations in blood and feathers, boobies had intermediate values, and Brown Noddies and Sooty Terns the lowest. At the interspecific level, although δ13C values segregated boobies from frigatebirds and noddies/terns, Hg concentrations were explained by neither δ13C nor δ15N values. At the intraspecific level, both Hg concentrations in blood and feathers show relatively small variations (16–32 and 26–74%, respectively), suggesting that feeding ecology had low seasonal variation among individuals. Despite most species being sexually dimorphic, differences in Hg contamination according to sex was detected only in Brown Boobies during the breeding period. Indeed, female Brown Boobies feed at a higher trophic level and in a different area than males during this period, resulting in higher blood Hg concentrations. The present study also shows that most of the seabirds sampled at Clipperton Island had little or no exposure to Hg toxicity, with 30% in the no risk category and 70% in the low risk category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerman JT, Eagles-Smith CA, Herzog MP, Hartman CA, Peterson SH, Evers DC, Jackson AK, Elliott JE, Vander Pol SS, Bryan CE (2016) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Total Environ 568:749–769

    Article  CAS  Google Scholar 

  • Albert C, Renedo M, Bustamante P, Fort J (2019) Using blood and feathers to investigate large-scale Hg contamination in arctic seabirds: a review. Environ Res 177:108588

    Article  CAS  Google Scholar 

  • Anderson ORJ, Phillips RA, McDonald RA, Shore RF, McGill RAR, Bearhop S (2009) Influence of trophic position and foraging range on mercury levels within a seabird community. Mar Ecol Progr Ser 375:277–288

    Article  CAS  Google Scholar 

  • Atwell L, Hobson KA, Welch HE (1998) Biomagnification and bioaccumulation of mercury in an Arctic marine food web: insights from stable nitrogen isotope analysis. Can J Fish Aquat Sci 55:1114–1121

    Article  CAS  Google Scholar 

  • Au DWK, Pitman RL (1986) Seabird interactions with dolphins and tuna in the eastern tropical Pacific. Condor 88:304–317

    Article  Google Scholar 

  • Ballance LT, Pitman RL, Reilly SB (1997) Seabird community structure along a productivity gradient: importance of competition and energetic constraint. Ecology 78(5):1502–1518

    Article  Google Scholar 

  • Barbraud C, Bertrand A, Bouchón M, Chaigneau A, Delord K, Demarcq H, Gimenez O, Torero MG, Gutiérrez D, Oliveros-Ramos R, Passuni G, Tremblay Y, Bertrand S (2018) Density dependence, prey accessibility and prey depletion by fisheries drive Peruvian seabird population dynamics. Ecography 41:1092–1102

    Article  Google Scholar 

  • Bearhop S, Phillips RA, Thompson DR, Waldrosn S, Furness RW (2000) Variability in mercury concentrations of great skuas Catharacta skua: the influence of colony, diet and trophic status inferred from stable isotope signatures. Mar Ecol Progr Ser 195:261–268

    Article  CAS  Google Scholar 

  • Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458

    Article  CAS  Google Scholar 

  • Becker PH, Gonz lez-Sol¡s J, Behrends B, Croxall J (2002) Feather mercury levels in seabirds at SouthGeorgia: influence of trophic position, sex and age. Mar Ecol Progr Ser 243:261–269

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2002) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. Biogeochem Environ Imp Trace Elem 19:262–297

    Google Scholar 

  • Bighetti GP, Padilha JA, Cunha LST, Malm O, Mancini PL (2022) Ventral feathers contained the highest mercury level in brown booby (Sula leucogaster), a pantropical seabird species. Chemosphere 298:134305

    Article  CAS  Google Scholar 

  • Bighetti GP, Padilha JA, Cunha LST, Kasper D, Malm O, Mancini PL (2021) Bioaccumulation of mercury is equal between sexes but different by age in seabird (Sula leucogaster) population from southeast coast of Brazil. Environ Pollut 285:117222

    Article  CAS  Google Scholar 

  • Blévin P, Carravieri A, Jaeger A, Chastel O, Bustamante, Cherel Y (2013) Wide range of mercury contamination in chicks of Southern Ocean seabirds. PLoS One 8(1):e54508

    Article  Google Scholar 

  • Braune BM, Gaskin DE (1987) A mercury budget for the Bonaparte’s Gull during autumn moult. Ornis Scand 18:244–250

    Article  Google Scholar 

  • Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Contam Toxicol 5:203–311

    Google Scholar 

  • Burger J, Gochfeld M (2004) Marine birds as sentinels of environmental pollution. EcoHealth 1:263–274

    Article  Google Scholar 

  • Carravieri A, Cherel Y, Blévin P, Brault-Favrou M, Chastel O, Bustamante P (2014a) Mercury exposure in a large subantarctic avian community. Environ Pollut 190:51–57

    Article  CAS  Google Scholar 

  • Carravieri A, Bustamante P, Churlaud C, Fromant A, Cherel Y (2014b) Moulting patterns drive within individual variations of stable isotopes and mercury in seabird body feathers: Implications for monitoring of the marine environment. Mar Biol 161:963–968

    Article  CAS  Google Scholar 

  • Carravieri A, Cherel Y, Brault-Favrou M, Churlaud C, Peluhet L, Labadie P, Budzinski H, Chastel O, Bustamante P (2017) From Antarctica to the subtropics: contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.). Environ Pollut 228:464–473

    Article  CAS  Google Scholar 

  • Carravieri A, Bustamante P, Labadie P, Budzinski H, Chastel O, Cherel Y (2020) Trace elements and persistent organic pollutants in chicks of 13 seabird species from Antarctica to the subtropics. Environ Int 134:105225

    Article  CAS  Google Scholar 

  • Catry T, Ramos JA, Le Corre M, Kojadinovic J, Bustamante P (2008) The role of stable isotopes and mercury concentrations to describe seabird foraging ecology in tropical environments. Mar Biol 155(6):637–647

    Article  CAS  Google Scholar 

  • Chardine JW, Morris RD (1989) Sexual size dimorphism and assortative mating in the Brown Noddy. Condor 91(4):868–874

    Article  Google Scholar 

  • Chastel O, Fort J, Ackerman J, Albert C, Angelier F, Basu N, Blévin P, Brault-Favrou M, Bustnes JO, Bustamante P, Danielsen J, Descamps S, Dietz R, Erikstad KE, Eulaers I, Ezhov A, Fleishman A, Gabrielsen GW, Gavrilo M, Gilchrist G, Gilg O, Gíslason S, Golubova E, Goutte A, Grémillet D, Hallgrimsson GT, Hansen ES, Hanssen SA, Huffeldt NP, Jakubas D, Jónsson JE, Kitaysky A, Kolbeinsson Y, Krasnov Y, Letcher R, Linnebjerg J, Mallory M, Merkel F, Moe B, Montevecchi W, Mosbech A, Olsen B, Orben R, Provencher J, Ragnarsdottir SB, ReiertsenTK, Rojek N, Romano M, Søndergaard J, Strøm H, Takahashi A, Tartu S, ThórarinssonTL, Thiebot JB, Will A, Wilson S, Wojczulanis-Jakubas K, Yannic G (2022) Mercury contamination and potential health risk to Arctic seabirds and shorebirds. Sci Total Environ 844:156944

    Article  CAS  Google Scholar 

  • Cherel Y, Barbraud C, Lahournat M, Jaeger A, Jaquemet S, Wanless RM, Phillips RA, Thompson DR, Bustamante P (2018) Accumulate or eliminate? Seasonal mercury dynamics in albatrosses, the most naturally contaminated family of birds. Environ Pollut 241:124–135

    Article  CAS  Google Scholar 

  • Cherel Y, Carrouée A (2022) Assessing marine ecosystem complexity: isotopic integration of the trophic structure of seabird communities from the Southern Ocean. Mar Ecol Progr Ser 694:193–208

    Article  Google Scholar 

  • Cherel Y, Le Corre M, Jaquemet S, Ménard F, Richard P, Weimerskirch H (2008) Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar Ecol Prog Ser 366:281–291

    Article  CAS  Google Scholar 

  • Chouvelon T, Warnau M, Churlaud C, Bustamante P (2009) Hg concentrations and related risk assessment in coral reef crustaceans, molluscs and fish from New Caledonia. Environ Pollut 157:331–340

    Article  CAS  Google Scholar 

  • Cossa D, Heimbürger LE, Lannuzel D, Rintoul SR, Butler ECV, Bowie AR, Averty B, Watson RJ, Remenyi T (2011) Mercury in the Southern Ocean. Geochim Cosmochim Acta 75:4037–4052

    Article  CAS  Google Scholar 

  • Cusset F, Reynolds SJ, Carravieri A, Amouroux D, Asensio O, Dickey RC, Fort J, Hughes BJ, Paiva VH, Ramos JA, Shearer L, Tessier E, Wearn CP, Cherel Y, Bustamante P (2023) A century of mercury: Ecosystem-wide changes drive increasing contamination of a tropical seabird species in the South Atlantic Ocean. Environ Pollut 323:121187

    Article  CAS  Google Scholar 

  • Cuvin-Aralar MLA, Furness RW (1991) Mercury and selenium interaction: a review. Ecotoxicol Environ Saf 21:348–364

    Article  CAS  Google Scholar 

  • Dearborn DC, Anders AD, Parker PG (2001) Sexual dimorphism, extrapair fertilizations, and operational sex ratio in great frigatebirds (Fregata minor). Behav Ecol 12:746–752

    Article  Google Scholar 

  • Eagles-Smith CA, Ackerman JT, Adelsbach TL, Takekawa JY, Miles AK, Keister RA (2008) Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environ Toxicol Chem 27:2136

    Article  CAS  Google Scholar 

  • Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, Kidd KA, Nyland JF (2018) Modulators to mercury risk to wildlife and humans in the context of rapid global change. Ambio 47(2):170–197

    Article  Google Scholar 

  • Eisler R (1987) Mercury hazards to fish, wildlife and invertebrates: a synoptic review. Washington DC: US Fish Wildl Serv Biol Rep 85(1.10):63

    Google Scholar 

  • Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley Jr JH, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81

    Article  CAS  Google Scholar 

  • Evers DC, Keane SE, Basu N, Buck D (2016) Evaluating the effectiveness of the Minamata Convention on Mercury: principles and recommendations for next steps. Sci Total Environ 569–570:888–903

    Article  Google Scholar 

  • Evers DC (2018) The effects of methylmercury on wildlife: a comprehensive review and approach for interpretation. Encyclopedia of the anthropocene. Elsevier.

  • Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7

    Article  CAS  Google Scholar 

  • Fort J, Robertson GJ, Grémillet D, Traisnel G, Bustamante P (2014) Spatial ecotoxicology: migratory arctic seabirds are exposed to mercury contamination while overwintering in the northwest Atlantic. Environ Sci Technol 48:11560–11567

    Article  CAS  Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Article  Google Scholar 

  • Furness RW, Camphuysen KCJ (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54(4):726–737

    Article  Google Scholar 

  • Furness RW, Muirhead SJ, Woodburn M (1986) Using bird feathers to measure mercury in the environment: relationships between mercury content and moult. Mar. Pollut Bull 17(1):27–30

    Article  CAS  Google Scholar 

  • Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenhally AC, Johs A, Hurt Jr RA, Bailey KL, Elias DA (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820

    Article  CAS  Google Scholar 

  • Gilmour ME, Hudson ST, Lamborg C, Fleishman AB, Young HS, Shaffer SA (2019) Tropical seabirds sample broadscale patterns of marine contaminants. Sci Total Environ 691:631–643

    Article  CAS  Google Scholar 

  • Giménez J, Arneill GE, Bennison A, Pirotta E, Gerritsen HD, Bodey TW, Bearhop S, Hamer KC, Votier S, Jessopp M (2021) Sexual mismatch between vessel-associated foraging and discard consumption in a marine top predator. Front Mar Sci 8:636468

    Article  Google Scholar 

  • Goutte A, Barbraud C, Meillère A, Carravieri A, Bustamante P, Labadie P, Budzinski H, Delord K, Cherel Y, Weimerskirch H, Chastel O (2014a) Demographic consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived bird, the wandering albatross. Proc R Soc B 281:20133313

    Article  Google Scholar 

  • Goutte A, Bustamante P, Barbraud C, Delord K, Weimerskirch H, Chastel O (2014b) Demographic responses to mercury exposure in two closely-related Antarctic top predators. Ecology 95(4):1075–1086

    Article  CAS  Google Scholar 

  • Goutte A, Barbraud C, Herzke D, Bustamante P, Angelier F, Tartu S, Clément-Chastel C, Moe B, Bech C, Gabrielsen GW, Bustnes JO, Chastel O (2015) Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury. Environ Pollut 200:1–9

    Article  CAS  Google Scholar 

  • Gustin MS, Evers DC, Bank MS, Hammerschmidt CR, Pierce A, Basu N, Blum J, Bustamante P, Celia Chen C, Driscoll CT, Horvat M, Jaffe D, Pacyna J, Pirrone N, Selin N (2016) Importance of integration and implementation of emerging and future mercury research into the Minamata Convention. Environ Sci Technol 50(6):2767–2770

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Bowman KL (2012) Vertical methylmercury distribution in the subtropical North Pacific Ocean. Mar Chem 132–133:77–82

    Article  Google Scholar 

  • Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798

    Article  Google Scholar 

  • Hsu-kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47:2441–2456

    Article  CAS  Google Scholar 

  • Ikemoto T, Kunito T, Tanaka H, Baba N, Miyazaki N, Tanabe S (2004) Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver. Arch Environ Contam Toxicol 47(3):402–413

    Article  CAS  Google Scholar 

  • Kojadinovic J, Bustamante P, Churlaud C, Cosson RP, Le Corre M (2007) Mercury in seabird feathers: insight on dietary habits and evidence for exposure levels in the western Indian Ocean. Sci Total Environ 384:194–204

    Article  CAS  Google Scholar 

  • Lamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson KM, Ohnemus DC, Lam PJ, Heimbürger LE, Rijkenberg MJA, Saito MA (2014) A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512(7512):65–68

    Article  CAS  Google Scholar 

  • Le Croizier G, Lorrain A, Sonke JE, Hoyos-Padilla EM, Galván-Magaña F, Santana-Morales O, Aquino-Baleytó M, Becerril-García EE, Muntaner-López G, Ketchum J, Block B, Carlisle A, Jorgensen SJ, Besnard L, Jung A, Schaal G, Point D (2020) The twilight zone as a major foraging habitat and mercury source for the great white shark. Environ. Sci. Technol. 54(24):15872–15882

    Article  Google Scholar 

  • Le Croizier G, Point D, Renedo M, Munaron JM, Espinoza P, Amezcua-Martinez F, Lanco Bertrand S, Lorrain A (2022) Mercury concentrations, biomagnification and isotopic discrimination factors in two seabird species from the Humboldt Current ecosystem. Mar Pollut Bull 177:113481

    Article  Google Scholar 

  • Lerma M, Castillo-Guerrero JA, Ruelas-Inzunza J, Fernández G (2016) Lead, cadmium and mercury in the blood of the blue-footed booby (Sula nebouxii) from the coast of Sinaloa, Gulf of California, Mexico. Mar Pollut Bull 110(1):293–298

    Article  CAS  Google Scholar 

  • Mancini PL, Valim EEM, de Barros Bauer A, Fischer LG (2023) Intraspecific trophic variation in brown booby (Sula leucogaster) from the Southwestern Atlantic. Mar Biol 170(1):1–18.

    Article  Google Scholar 

  • Mancini PL, Bond AL, Hobson KA, Duarte LS, Bugoni L (2013) Foraging segregation in tropical and polar seabirds: testing the intersexual competition hypothesis. J Exp Mar Biol Ecol 449:186–193

    Article  Google Scholar 

  • Monteiro LR, Furness RW (1995) Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut 80:851–870

    Article  CAS  Google Scholar 

  • Monteiro LR, Granadeiro JP, Furness RW (1998) Relationship between mercury levels and diet in Azores seabirds. Mar Ecol Prog Ser 166:259–265

    Article  CAS  Google Scholar 

  • Monteiro LR, Furness RW (2001) Kinetics, dose-response, excretion, and toxicity of methylmercury in free-living Cory’s shearwater chicks. Environ Toxicol Chem 20(8):1816–1823

    CAS  Google Scholar 

  • Muirhead SJ, Furness RW (1988) Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Mar Pollut Bull 19:278–283

    Article  CAS  Google Scholar 

  • Nelson JB (1978) The Sulidae: gannets and boobies. Oxford University Press, Oxford

    Google Scholar 

  • Nelson JB (2005) Pelicans, cormorants and their relatives pelecanidae, sulidae, phalacrocoracidae, anhingidae, fregatidae, phaethontidae. Oxford University Press, Oxford

    Google Scholar 

  • Peterson SH, Ackerman JT, Toney M, Herzog MP (2019) Mercury concentrations vary within and among individual bird feathers: a critical evaluation and guidelines for feather use in mercury monitoring programs. Environ Toxicol Chem 38(6):1164–1187

    Article  CAS  Google Scholar 

  • Phillips RA, McGill RAR, Dawson DA, Bearhop S (2011) Sexual segregation in distribution, diet and trophic level of seabirds: insights from stable isotope analysis. Mar Biol 158:2199–2208

    Article  Google Scholar 

  • Pitman RL, Ballance LT, Bost C (2005) Clipperton Island: pig sty, rat hole and booby prize. Mar Ornithol 33:193–194

    Google Scholar 

  • Pitman RL, Ballance LT, Bost CA (2012) Incidence of wing deformities (‘Angel Wing’) among Masked Boobies at Clipperton Island: life history consequences and insight into etiology. Wilson J Ornithol 124(3):597–602

    Article  Google Scholar 

  • Pollet IL, Provencher JF, Tranquilla LM, Burgess NM, Mallory ML (2022) Mercury levels in North Atlantic seabirds: a synthesis. Mar Pollut Bull 181:113884

    Article  CAS  Google Scholar 

  • Renedo M, Amouroux D, Pedrero Z, Bustamante P, Cherel Y (2018) Identification of sources and bioaccumulation pathways of MeHg in subantarctic penguins: a stable isotopic investigation. Scient Rep 8(1):8865

    Article  Google Scholar 

  • Renedo R, Amouroux D, Albert C, Bérail S, Brathen V, Gavrilo M, Grémillet D, Helgason H, Jakubas D, Mosbech A, Strøm H, Tessier E, Wojczulanis-Jakubas K, Bustamante P, Fort J (2020) Contrasting spatial and seasonal trends of methylmercury exposure pathways of Arctic seabirds: combination of large-scale tracking and stable isotopic approaches. Environ Sci Technol 54(21):13619–13629

    Article  CAS  Google Scholar 

  • Renedo M, Pedrero Z, Amouroux D, Cherel Y, Bustamante P (2021) Mercury in key tissues document metabolic processes in seabirds. Chemosphere 263:127777

    Article  CAS  Google Scholar 

  • Renedo M, Point D, Sonke JE, Lorrain A, Demarcq H, Graco M, Grados D, Guti´errez D, Médieu A, Munaron JM, Pietri A, Colas F, Tremblay Y, Roy A, Bertrand A, Bertrand SL (2021) ENSO climate forcing of the marine mercury cycle in the Peruvian upwelling zone does not affect methylmercury levels of marine avian top predators. Environ Sci Technol 55(23):15754–15765

    Article  CAS  Google Scholar 

  • Reynolds SJ, Hughes BJ, Wearn CP, Dickey RC, Brown J, Weber NL, Weber SB, Paiva VH, Ramos JA (2019) Long-term dietary shift and population decline of a pelagic seabird—a health check on the tropical Atlantic? Glob Change Biol 25:1383–1394

    Article  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury-an overview. Atmos Environ 32:809–82

    Article  CAS  Google Scholar 

  • Sebastiano M, Bustamante P, Eulaers I, Malarvannan G, Mendez-Fernandez P, Churlaud C, Blévin P, Hauselmann A, Covaci A, Eens M, Costantini D, Chastel O (2017) Trophic ecology drives contaminant concentrations within a tropical seabird community. Environ Pollut 227:183–193

    Article  CAS  Google Scholar 

  • Sprovieri F, Pirrone N, Ebinghaus R, Kock H, Dommergue A (2010) A review of worldwide atmospheric mercury measurements. Atmos Chem Phys 10:8245–8265

    Article  CAS  Google Scholar 

  • Stewart F, Phillips R, Bartle J (1999) Influence of phylogeny, diet, moult schedule and sex on heavy metal concentrations in New Zealand Procellariiformes. Mar Ecol Prog Ser 178:295–305

    Article  CAS  Google Scholar 

  • Stoneburner DL, Patty PC, Robertson Jr WB (1980) Evidence of heavy metal accumulations in sooty terns. Sci Total Environ 14(2):147–152

    Article  CAS  Google Scholar 

  • Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39:228–269

    Article  CAS  Google Scholar 

  • Tartu S, Goutte A, Bustamante P, Angelier F, Moe B, Clément-Chastel C, Bech C, Gabrielsen, Bustnes JO, Chastel O (2013) To breed or not to breed: endocrine response to mercury contamination by an Arctic seabird. Biol Lett 9:20130317

    Article  Google Scholar 

  • Tartu S, Angelier F, Wingfield JC, Bustamante P, Labadie P, Budzinski H, Weimerskirch H, Bustnes JO, Chastel O (2015) Corticosterone, prolactin and egg neglect behavior in relation to mercury and legacy POPs in a long-lived Antarctic bird. Sci Total Environ 505:180–188

    Article  CAS  Google Scholar 

  • Weimerskirch H, Le Corre M, Ropert-Coudert Y, Kato A, Marsac F (2006) Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the red-footed booby. Oecologia 146:681–691

    Article  Google Scholar 

  • Weimerskirch H, Le Corre M, Bost CA (2008) Foraging strategy of masked boobies from the largest colony in the world: relationship to environmental conditions and fisheries. Mar Ecol Prog Ser 288:251–261

    Article  Google Scholar 

  • Weimerskirch H, Le Corre M, Gadenne H, Pinaud D, Kato A, Ropert-Coudert Y, Bost CA (2009) Relationship between reversed sexual dimorphism, breeding investment and foraging ecology in a pelagic seabird, the masked booby. Oecologia 161:637–649

    Article  Google Scholar 

  • Weimerskirch H, Le Corre M, Bost CA, Ballance LT, Pitman RL (2009) L’avifaune de l’île de Clipperton et l’écologie des oiseaux marins. Clipperton Environ Biodivers Microcosme Océan 19:381–392

    Google Scholar 

  • Whitney MC, Cristol DA (2017) Impacts of sublethal mercury exposure on birds: a detailed review. Rev Environ Contam Toxicol 244:113–163

    Google Scholar 

  • Willett CS, Leben RR, Lavin MF (2006) Eddies and tropical instability waves in the eastern tropical Pacific: a review. Prog Oceanogr 69:218–238

    Article  Google Scholar 

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Article  CAS  Google Scholar 

  • Yu RQ, Reinfelder JR, Hines ME, Barkay T (2013) Mercury methylation by the methanogen Methanospirillum hungatei. Appl Environ Microbiol 79:6325–6330

    Article  CAS  Google Scholar 

  • Zarn AM, Valle CA, Brasso R, Fetzner WD, Emslie SD (2020) Stable isotope and mercury analyses of the Galápagos Islands seabird community. Mar Ornithol 48:71–80

    Google Scholar 

Download references

Acknowledgements

The authors thank Jean-Louis Etienne who organised the expedition on Clipperton Island for the logistical and financial support of the study, and all participants of the expedition who helped us during the field work. We are grateful to Cécile Riboud from the Service d’Analyses Biologiques (CEBC) for molecular sexing, Carine Churlaud from the Plateforme Analyses Elémentaires (LIENSs) for her support during Hg analysis, and Gaël Guillou from the Plateforme Analyses Isotopiques (LIENSs) for running stable isotope measurements. Thanks are due to the CPER (Contrat de Projet Etat-Région) and the FEDER (Fonds Européen de Développement Régional) for funding the AMA and the IRMS of LIENSs laboratory. The IUF (Institut Unsiversitaire de France) is acknowledged for its support to PB as a Senior Member. This work benefitted from the French GDR “Aquatic Ecotoxicology” framework, that aims to foster stimulating scientific discussions and collaborations for more integrative approaches.

Author information

Authors and Affiliations

Authors

Contributions

PB: Conceptualisation, Methodology, Supervision, Investigation, Validation, Funding acquisition, Writing—Original draft, reviewing and editing. TLV, C-AB, MB-F, MLC, HW: Investigation, Writing—Reviewing and editing. YC: Conceptualisation, Supervision, Investigation, Validation, Writing—Reviewing and editing. All the authors revised and approved the ms.

Corresponding author

Correspondence to Paco Bustamante.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, P., Le Verge, T., Bost, CA. et al. Mercury contamination in the tropical seabird community from Clipperton Island, eastern Pacific Ocean. Ecotoxicology 32, 1050–1061 (2023). https://doi.org/10.1007/s10646-023-02691-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02691-2

Keywords

Navigation