Skip to main content
Log in

Trimethylplatinum(IV) Complexes for MOCVD Applications: A Physicochemical Study

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The structure of trimethylplatinum(IV) iodide [(CH3)3PtI]4 (I) (CIF file CCDC no. 22330007) is refined. The structure of the synthesized for the first time trimethylplatinum(IV) complex with tridentate N,N,O-iminoketonate [(CH3)3Pt(C9H17N2O)] (II) is determined by X-ray diffraction (XRD) (CIF file CCDC no. 22330008). The purity of the isolated phases is confirmed by elemental analysis and IR and NMR spectroscopy. The thermal behavior of complex II is studied by thermogravimetry. The energies of ionization and fragmentation of the molecules of complex II leading to the formation of the most stable fragment [(CH3)3Pt]+ are estimated by quantum-chemical calculations. Complex II is tested in the MOCVD processes. The Pt films with the pronounced (111) texture and particle sizes about 100 nm are prepared on Si plates in the presence of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Liang, L.C., Liao, S.M., and Zou, X.R., Inorg. Chem., 2021, vol. 60, no. 20, p. 15118. https://doi.org/10.1021/acs.inorgchem.1c02494

    Article  CAS  PubMed  Google Scholar 

  2. Skabitsky, I.V., Romadina, E.I., Sakharov, S.G., et al., J. Organomet. Chem., 2019, vol. 896, p. 77. https://doi.org/10.1016/j.jorganchem.2019.05.008

    Article  CAS  Google Scholar 

  3. Lien, C., Sun, H., Qin, X., et al., Surf. Sci., 2018, vol. 677, p. 161. https://doi.org/10.1016/j.susc.2018.07.002

    Article  CAS  Google Scholar 

  4. Thurier, C. and Doppelt, P., Coord. Chem. Rev., 2008, vol. 252, nos. 1–2, p. 155. https://doi.org/10.1016/j.ccr.2007.04.005

    Article  CAS  Google Scholar 

  5. Komiya, S., Ezumi, S., Komine, N., et al., Organometallics, 2009, vol. 28, no. 13, p. 3608. https://doi.org/10.1021/om900319a

    Article  CAS  Google Scholar 

  6. Pichaandi, K.R., Kabalan, L., Amini, H., et al., Inorg. Chem., 2017, vol. 56, no. 4, p. 2145. https://doi.org/10.1021/acs.inorgchem.6b02801

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh, B.N., Lentz, D., Schlecht, S., et al., New J. Chem., 2015, vol. 39, p. 3536. https://doi.org/10.1039/C4NJ02426E

    Article  CAS  Google Scholar 

  8. Ghosh, B.N., Hausmann, H., Schlecht, S., et al., ZAAC, 2013, vol. 639, nos. 12–13, p. 2202. https://doi.org/10.1002/zaac.201300277

    Article  CAS  Google Scholar 

  9. Ghosh, B.N., Schlecht, S., and Bauzá, A., New J. Chem., 2017, vol. 41, p. 3498. https://doi.org/10.1039/C7NJ00337D

    Article  CAS  Google Scholar 

  10. Lindner, R., Wagner, C., and Steinborn, D., J. Am. Chem. Soc., 2009, vol. 131, no. 25, p. 8861. https://doi.org/10.1021/ja901264t

    Article  CAS  PubMed  Google Scholar 

  11. Lanci, M.P., Remy, M.S., Lao, D.B., et al., Organometallics, 2011, vol. 30, no. 14, p. 370. https://doi.org/10.1021/om200508k

    Article  CAS  Google Scholar 

  12. Baker, L., Cavanagh, A.S., Seghete, D., et al., ACS Nano, 2013, vol. 7, no. 7, p. 6337. https://doi.org/10.1021/nn402385f

    Article  CAS  Google Scholar 

  13. Aaltonen, T., Rahtu, A., and Ritala, M., Electrochem. Solid-State Lett., 2003, vol. 6, no. 9, p. 130. https://doi.org/10.1149/1.1595312

    Article  CAS  Google Scholar 

  14. Karakovskaya, K.I., Dorovskikh, S.I., Vikulova, E.S., et al., Coatings, 2021, vol. 11, no. 1, p. 78. https://doi.org/10.3390/coatings11010078

    Article  CAS  Google Scholar 

  15. Dorovskikh, S.I., Zharkova, G.I., Turgambaeva, A.E., et al., Appl. Organomet. Chem., 2017, vol. 31, no. 7. e3654. https://doi.org/10.1002/aoc.3654

    Article  CAS  Google Scholar 

  16. Zharkova, G.I., Baidina, I., Turgambaeva, A., et al., Polyhedron, 2012, vol. 40, p. 40. https://doi.org/10.1016/j.poly.2012.03.045

    Article  CAS  Google Scholar 

  17. Zharkova, G.I., Baidina, I.A., Igumenov, I.K., et al., Russ. J. Coord. Chem., 2011, vol. 37, p. 680. https://doi.org/10.1134/S1070328411080136

    Article  CAS  Google Scholar 

  18. Mohlala, L.M., Jen, T.-C., and Olubambi, P.A., Procedia Manuf., 2019, vol. 35, p. 1250. https://doi.org/10.1016/j.promfg.2019.06.083

    Article  Google Scholar 

  19. Dorovskikh, S.I., Krisyuk, V.V., Mirzaeva, I.V., et al., Polyhedron, 2020, vol. 182, p. 114475. https://doi.org/10.1016/j.poly.2020.114475

    Article  CAS  Google Scholar 

  20. Dorovskikh, S.I., Klyamer, D.D., Mirzaeva, I.V., et al., J. Fluorine Chem., 2021, vol. 249, p. 109843. https://doi.org/10.1016/j.jfluchem.2021.109843

    Article  CAS  Google Scholar 

  21. Fulmer, G.R., Miller, AJ.M., Sherden, N.H., et al., J. Organomet., 2010, vol. 29, p. 2176. https://doi.org/10.1021/om100106e

    Article  CAS  Google Scholar 

  22. Baldwin, J.C. and Kaska, W.C., Inorg. Chem., 1975, vol. 14, no. 8, p. 2020. https://doi.org/10.1021/ic50150a063

    Article  CAS  Google Scholar 

  23. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12), Madison: Bruker AXS Inc., 2004.

  24. Sheldrick, G., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  25. ADF 2022. SCM. Theoretical Chemistry, Amsterdam: Vrije Universiteit, 2022. http://www.scm.com.

  26. Lenthe, E., Ehlers, A., and Baerends, E.J., J. Chem. Phys., 1999, vol. 110, no. 18, p. 8943. https://doi.org/10.1063/1.478813

    Article  Google Scholar 

  27. Pye, C.C. and Ziegler, T., Theor. Chem. Acc, 1999, vol. 101, no. 6, p. 396. https://doi.org/10.1007/s002140050457

    Article  CAS  Google Scholar 

  28. Kraus, W. and Nolze, G., J. Appl. Crystallogr., 1996, vol. 9, p. 301. https://doi.org/10.1107/S0021889895014920

    Article  Google Scholar 

  29. Donnay, G., Coleman, L.B., Krueghoff, N.G., et al., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1968, vol. 24, p. 157.

    Article  CAS  Google Scholar 

  30. Zharkova, G.I., Baidina, I.A., Naumov, D.Y., et al., J. Struct. Chem., 2011, vol. 52, no. 4, p. 550. https://doi.org/10.1134/S0022476611030152

    Article  CAS  Google Scholar 

  31. Paul, H., Adv. Eng. Mater., 2010, vol. 12, p. 1029. https://doi.org/10.1002/adem.201000078

    Article  CAS  Google Scholar 

  32. Goswami, J., Wang, C.-G., Cao, W., and Dey, S.K., Chem. Vap. Depos., 2003, vol. 9, no. 4, p. 213. https://doi.org/10.1002/cvde.20030624033

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.S. Vikulov, I.V. Mirzaev, and D.A. Piryazev.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, projects nos. 121031700313-8 and 121031700314-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Dorovskikh.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorovskikh, S.I., Kuratieva, N.V., Korolkov, I.V. et al. Trimethylplatinum(IV) Complexes for MOCVD Applications: A Physicochemical Study. Russ J Coord Chem 49, 503–512 (2023). https://doi.org/10.1134/S1070328423600353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600353

Keywords:

Navigation