Skip to main content
Log in

Organyltriphenylphosphonium Dichlorodicyanoaurates [Ph3PR][Au(CN)2Cl2] (R = n-Pr, i-Bu, and n-Hp): Synthesis and Structures

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reactions of potassium dichlorodicyanoaurate with n-propyl-, iso-butyl-, and n-heptyltriphenylphosphonium bromides in water followed by recrystallization from acetonitrile give dichlorodicyanoaurate complexes [Ph3P(n-Pr)][Au(CN)2Cl2] (I), [Ph3P(i‑Bu)][Au(CN)2Cl2] (II), and [Ph3P(n-Hp)][Au(CN)2Cl2] (III). Compounds IIII are identified by elemental analysis and IR spectroscopy. The structure of compound III is also proved by X-ray diffraction (XRD) (CIF file CCDC no. 2094701). According to the XRD data, complex III consists of n-heptyltriphenylphosphonium cations and crystallographically independent planar square dichlorodicyanoaurate anions of two types with similar geometric parameters. The steric organization of the crystal of complex III is formed by hydrogen bonds С–H∙∙∙N≡C (2.55–2.63 Å) and С–H∙∙∙Cl–Au (2.87 Å). In addition, the structure contains С–H∙∙∙π(Ph) contacts with the distances from the hydrogen atom to the benzene ring plane equal to 2.80 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kumar, K., Stefanczyk, O., Chorazy, S., et al., Inorg. Chem., 2019, vol. 58, p. 5677. https://doi.org/10.1021/acs.inorgchem.8b03634

    Article  CAS  PubMed  Google Scholar 

  2. Nicholas, A.D., Bullard, R.M., Pike, R.D., and Patterson, H., Eur. J. Inorg. Chem., 2019, vol. 2019, p. 956. https://doi.org/10.1002/ejic.201801407

    Article  CAS  Google Scholar 

  3. Belyaev, A., Eskelinen, T., Dau, T.M., et al., Chem. Eur. J., 2017, vol. 24, p. 1404. https://doi.org/10.1002/chem.201704642

    Article  CAS  PubMed  Google Scholar 

  4. Katz, M.J., Ramnial, T., Yu, H., and Leznoff, D.B., J. Am. Chem. Soc., 2008, vol. 130, p. 10662. https://doi.org/10.1021/ja801773p

    Article  CAS  PubMed  Google Scholar 

  5. Ovens, J.S., Christensen, P.R., and Leznoff, D.B., Chem. Eur. J., 2016, vol. 22, p. 8234. https://doi.org/10.1002/chem.201505075

    Article  CAS  PubMed  Google Scholar 

  6. Ovens, J.S., Geisheimer, A.R., Bokov, A.A., et al., In-org. Chem., 2010, vol. 49, p. 9609. https://doi.org/10.1021/ic101357y

    Article  CAS  Google Scholar 

  7. Katz, M.J. and Leznoff, D.B., J. Am. Chem. Soc., 2009, vol. 131, p. 18435. https://doi.org/10.1021/ja907519c

    Article  CAS  PubMed  Google Scholar 

  8. Thompson, J.R., Goodman-Rendall, K.A.S., and Leznoff, D.B., Polyhedron, 2016, vol. 108, p. 93. https://doi.org/10.1016/j.poly.2015.12.026

    Article  CAS  Google Scholar 

  9. Thompson, J.R., Katz, M.J., Williams, V.E., and Leznoff, D.B., Inorg. Chem., 2015, vol. 54, p. 6462. https://doi.org/10.1021/acs.inorgchem.5b00749

    Article  CAS  PubMed  Google Scholar 

  10. Lefebvre, J., Batchelor, R.J., and Leznoff, D.B., J. Am. Chem. Soc., 2004, vol. 126, p. 16117. https://doi.org/10.1021/ja049069n

    Article  CAS  PubMed  Google Scholar 

  11. Lefebvre, J., Korcok, J.L., Katz, M.J., and Leznoff, D.B., Sensors, 2012, vol. 12, p. 3669. https://doi.org/10.3390/s120303669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Varju, B.R., Ovens, J.S., and Leznoff, D.B., Chem. Commun., 2017, no. 48, p. 6500. https://doi.org/10.1039/c7cc03428h

  13. Ovens, J.S. and Leznoff, D.B., Chem. Mater., 2015, vol. 27, p. 1465. https://doi.org/10.1021/cm502998w

    Article  CAS  Google Scholar 

  14. Ovens, J.S. and Leznoff, D.B., Inorg. Chem., 2017, vol. 56, p. 7332. https://doi.org/10.1021/acs.inorgchem.6b03153

    Article  CAS  PubMed  Google Scholar 

  15. Ovens, J.S. and Leznoff, D.B., CrystEngComm, 2018, vol. 20, p. 1769. https://doi.org/10.1039/c7ce02167d

    Article  CAS  Google Scholar 

  16. Lefebvre, J., Chartrand, D., and Leznoff, D.B., Polyhedron, 2007, vol. 26, p. 2189. https://doi.org/10.1016/j.poly.2006.10.045

    Article  CAS  Google Scholar 

  17. Geisheimer, A.R., Huang, W., Pacradouni, V., et al., Dalton Trans., 2011, vol. 40, p. 7505. https://doi.org/10.1039/c0dt01546f

    Article  CAS  PubMed  Google Scholar 

  18. Lefebvre, J., Callaghan, F., Katz, M.J., et al., Chem. Eur. J., 2006, vol. 12, p. 6748. https://doi.org/10.1002/chem.200600303

    Article  CAS  PubMed  Google Scholar 

  19. Lefebvre, J., Chartrand, D., and Leznoff, D.B., Inorg. Chem., 2009, vol. 48, p. 55. https://doi.org/10.1002/chem.200600303

    Article  CAS  PubMed  Google Scholar 

  20. Shevchenko, D.P. and Khabina, A.E., Bull. South Ural State Univ., Ser. Chem., 2021, vol. 13, p. 58. https://doi.org/10.14529/chem210106

    Article  Google Scholar 

  21. Efremov, A.N., Sharutin, V.V., Sharutina, O.K., et al., Russ. J. Chem. Chem. Tech., 2020, vol. 63, p. 10. https://doi.org/10.6060/ivkkt.20206303.6097

    Article  CAS  Google Scholar 

  22. Sharutin, V.V., Sharutina, O.K., Tarasova, N.M., et al., Russ. Chem. Bull., 2020, vol. 69, p. 1892. https://doi.org/10.1007/s11172-020-2975-4

    Article  CAS  Google Scholar 

  23. Sharutin, V.V., Bull. South Ural State Univer., Ser. Chem., 2020, vol. 12, p. 74. https://doi.org/10.14529/chem200208

    Article  Google Scholar 

  24. Sharutin, V.V., Sharutina, O.K., Tarasova, N.M., and Efremov, A.N., Russ. J. Inorg. Chem., 2020, vol. 65, p. 169. https://doi.org/10.1134/s0036023620020151

    Article  CAS  Google Scholar 

  25. Sharutin, V.V., Sharutina, O.K., Efremov, A.N., and Eltsov, O.S., Russ. J. Coord. Chem., 2020, vol. 46, p. 631. https://doi.org/10.1134/s1070328420090031

    Article  CAS  Google Scholar 

  26. SMART. SAINT-Plus. Versions 5.0. Data Collection, Processing Software for the SMART System, Madison: Bruker AXS Inc., 1998.

  27. SHELXTL/PC, Versions 5.10, An Integrated System for Solving, Refining, Displaying Crystal Structures from Diffraction Data, Madison: Bruker AXS Inc., 1998.

  28. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  29. Cordero, B., Gómez, V., Platero-Prats, A.E., et al., Dalton Trans., 2008, p. 2832. https://doi.org/10.1039/b801115j

  30. Mantina, M., Chamberlin, A.C., Valero, R., et al., J. Phys. Chem. A, 2009, vol. 113, p. 5806. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishio, M., Phys. Chem. Chem. Phys., 2011, p. 13873. https://doi.org/10.1039/c1cp20404a

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Shevchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, D.P., Khabina, A.E. Organyltriphenylphosphonium Dichlorodicyanoaurates [Ph3PR][Au(CN)2Cl2] (R = n-Pr, i-Bu, and n-Hp): Synthesis and Structures. Russ J Coord Chem 49, 521–525 (2023). https://doi.org/10.1134/S1070328423600328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600328

Keywords:

Navigation