Skip to main content
Log in

The Future of Advanced Therapies for Pediatric Crohn’s Disease

  • Leading Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Pediatric Crohn’s disease commonly presents with moderate-to-severe intestinal inflammation with a greater risk of complications if remission is not achieved. Anti-tumor necrosis factor therapies have offered the possibility of deep and durable remission; however, many children do not respond or no longer respond over time. Further, some children do not require broader systemic immunosuppression to achieve remission and are better served by an alternative treatment strategy. Proper utilization of advanced biologic and small-molecule therapies, which have become available for adult patients since anti-tumor necrosis factor medications, is paramount for tighter disease control for a large proportion of children. Newer advanced therapies such as anti-integrin and anti-interleukin biologics, and several small-molecule agents capitalize on various mechanisms through narrower immunologic targets and reduced immunogenicity. Given limited regulatory approvals of these agents for use in children with Crohn’s disease, clinicians continue to rely on data extrapolated from clinical trials in adult patients, sparse pediatric studies, and a growing real-world experience for treatment selection and optimization. In this article, we discuss currently available treatment options, pipeline drugs, and relevant data as they pertain to some of the most pressing clinical challenges faced in treating pediatric Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pigneur B, Seksik P, Viola S, et al. Natural history of Crohn’s disease: comparison between childhood- and adult-onset disease. Inflamm Bowel Dis. 2010;16(6):953–61. https://doi.org/10.1002/ibd.21152.

    Article  PubMed  Google Scholar 

  2. Duricova D, Burisch J, Jess T, Gower-Rousseau C, Lakatos PL, ECCO-EpiCom. Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature. J Crohns Colitis. 2014;8(11):1351–61. https://doi.org/10.1016/j.crohns.2014.05.006.

    Article  PubMed  Google Scholar 

  3. Kurowski JA, Milinovich A, Ji X, et al. Differences in biologic utilization and surgery rates in pediatric and adult Crohn’s disease: results from a large electronic medical record-derived cohort. Inflamm Bowel Dis. 2021;27(7):1035–44. https://doi.org/10.1093/ibd/izaa239.

    Article  PubMed  Google Scholar 

  4. Ahmed S, Alam S, Alsabri M. Health-related quality of life in pediatric inflammatory bowel disease patients: a narrative review. Cureus. 2022;14(9): e29282. https://doi.org/10.7759/cureus.29282.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sahn B, Markowitz J. The natural history of Crohn disease in children. In: Mamula P, Grossman A, Baldassano R, Kelsen J, Markowitz J, editors. Pediatric inflammatory bowel disease. Cham: Springer; 2017.

    Google Scholar 

  6. Colombel JF, Panaccione R, Bossuyt P, et al. Effect of tight control management on Crohn’s disease (CALM): a multicentre, randomised, controlled phase 3 trial. Lancet. 2017;390(10114):2779–89. https://doi.org/10.1016/S0140-6736(17)32641-7.

    Article  PubMed  Google Scholar 

  7. Turner D, Ricciuto A, Lewis A, et al. STRIDE-II: an update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) initiative of the International Organization for the Study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology. 2021;160(5):1570–83. https://doi.org/10.1053/j.gastro.2020.12.031.

    Article  CAS  PubMed  Google Scholar 

  8. Payen E, Neuraz A, Zenzeri L, et al. Adalimumab therapy in pediatric Crohn disease: a 2-year follow-up comparing “top-down” and “step-up” strategies. J Pediatr Gastroenterol Nutr. 2023;76(2):166–73. https://doi.org/10.1097/MPG.0000000000003643.

    Article  CAS  PubMed  Google Scholar 

  9. Hyams J, Walters TD, Crandall W, et al. Safety and efficacy of maintenance infliximab therapy for moderate-to-severe Crohn’s disease in children: REACH open-label extension. Curr Med Res Opin. 2011;27(3):651–62. https://doi.org/10.1185/03007995.2010.547575.

    Article  CAS  PubMed  Google Scholar 

  10. Jongsma MME, Aardoom MA, Cozijnsen MA, et al. First-line treatment with infliximab versus conventional treatment in children with newly diagnosed moderate-to-severe Crohn’s disease: an open-label multicentre randomised controlled trial. Gut. 2022;71(1):34–42. https://doi.org/10.1136/gutjnl-2020-322339.

    Article  CAS  PubMed  Google Scholar 

  11. Colman RJ, Lawton RC, Dubinsky MC, Rubin DT. Methotrexate for the treatment of pediatric Crohn’s disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2018;24(10):2135–41. https://doi.org/10.1093/ibd/izy078.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosh JR. The current role of methotrexate in patients with inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2020;16(1):43–6.

    PubMed  Google Scholar 

  13. Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362(15):1383–95. https://doi.org/10.1056/NEJMoa0904492.

    Article  CAS  PubMed  Google Scholar 

  14. Chande N, Townsend CM, Parker CE, MacDonald JK. Azathioprine or 6-mercaptopurine for induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2016;10(10): CD000545. https://doi.org/10.1002/14651858.CD000545.pub5.

    Article  PubMed  Google Scholar 

  15. Shale M, Kanfer E, Panaccione R, Ghosh S. Hepatosplenic T cell lymphoma in inflammatory bowel disease. Gut. 2008;57(12):1639–41. https://doi.org/10.1136/gut.2008.163279.

    Article  PubMed  Google Scholar 

  16. Hyams JS, Dubinsky MC, Baldassano RN, et al. Infliximab is not associated with increased risk of malignancy or hemophagocytic lymphohistiocytosis in pediatric patients with inflammatory bowel disease. Gastroenterology. 2017;152(8): 1901–14.e3. https://doi.org/10.1053/j.gastro.2017.02.004.

    Article  Google Scholar 

  17. Spencer EA, Dubinsky MC. Precision medicine in pediatric inflammatory bowel disease. Pediatr Clin North Am. 2021;68(6):1171–90. https://doi.org/10.1016/j.pcl.2021.07.011.

    Article  PubMed  Google Scholar 

  18. Hyams JS, Turner D, Cohen SA, et al. Pharmacokinetics, safety and efficacy of intravenous vedolizumab in paediatric patients with ulcerative colitis or Crohn’s disease: results from the phase 2 HUBBLE Study. J Crohns Colitis. 2022;16(8):1243–54. https://doi.org/10.1093/ecco-jcc/jjac036.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Atia O, Shavit-Brunschwig Z, Mould DR, et al. Outcomes, dosing, and predictors of vedolizumab treatment in children with inflammatory bowel disease (VEDOKIDS): a prospective, multicentre cohort study. Lancet Gastroenterol Hepatol. 2023;8(1):31–42. https://doi.org/10.1016/S2468-1253(22)00307-7.

    Article  PubMed  Google Scholar 

  20. Schwartz DA, Peyrin-Biroulet L, Lasch K, Adsul S, Danese S. Efficacy and safety of 2 vedolizumab intravenous regimens for perianal fistulizing Crohn’s disease: ENTERPRISE Study. Clin Gastroenterol Hepatol. 2022;20(5): 1059–67.e9. https://doi.org/10.1016/j.cgh.2021.09.028.

    Article  CAS  Google Scholar 

  21. Sandborn WJ, Panes J, Danese S, et al. Etrolizumab as induction and maintenance therapy in patients with moderately to severely active Crohn’s disease (BERGAMOT): a randomised, placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol. 2023;8(1):43–55. https://doi.org/10.1016/S2468-1253(22)00303-X.

    Article  PubMed  Google Scholar 

  22. Dayan JR, Dolinger M, Benkov K, et al. Real world experience with ustekinumab in children and young adults at a tertiary care pediatric inflammatory bowel disease center. J Pediatr Gastroenterol Nutr. 2019;69(1):61–7. https://doi.org/10.1097/MPG.0000000000002362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sandborn WJ, Rebuck R, Wang Y, et al. Five-year efficacy and safety of ustekinumab treatment in Crohn’s disease: the IM-UNITI Trial. Clin Gastroenterol Hepatol. 2022;20(3): 578–90.e4. https://doi.org/10.1016/j.cgh.2021.02.025.

    Article  CAS  Google Scholar 

  24. Rosh JR, Turner D, Griffiths A, et al. Ustekinumab in paediatric patients with moderately to severely active Crohn’s disease: pharmacokinetics, safety, and efficacy results from UniStar, a phase 1 study. J Crohns Colitis. 2021;15(11):1931–42. https://doi.org/10.1093/ecco-jcc/jjab089.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rosh JR, Lerer T, Markowitz J, et al. Retrospective Evaluation of the Safety and Effect of Adalimumab Therapy (RESEAT) in pediatric Crohn’s disease. Am J Gastroenterol. 2009;104(12):3042–9. https://doi.org/10.1038/ajg.2009.493.

    Article  CAS  PubMed  Google Scholar 

  26. Sands BE, Irving PM, Hoops T, et al. Ustekinumab versus adalimumab for induction and maintenance therapy in biologic-naive patients with moderately to severely active Crohn’s disease: a multicentre, randomised, double-blind, parallel-group, phase 3b trial. Lancet. 2022;399(10342):2200–11. https://doi.org/10.1016/S0140-6736(22)00688-2.

    Article  CAS  PubMed  Google Scholar 

  27. Danese S, Vermeire S, D’Haens G, et al. Treat to target versus standard of care for patients with Crohn’s disease treated with ustekinumab (STARDUST): an open-label, multicentre, randomised phase 3b trial. Lancet Gastroenterol Hepatol. 2022;7(4):294–306. https://doi.org/10.1016/S2468-1253(21)00474-X.

    Article  PubMed  Google Scholar 

  28. Yerushalmy-Feler A, Pujol-Muncunill G, Martin-de-Carpi J, et al. Safety and potential efficacy of escalating dose of ustekinumab in pediatric Crohn disease (the Speed-up Study): a multicenter study from the Pediatric IBD Porto Group of ESPGHAN. J Pediatr Gastroenterol Nutr. 2022;75(6):717–23. https://doi.org/10.1097/MPG.0000000000003608.

    Article  CAS  PubMed  Google Scholar 

  29. Bermejo F, Jimenez L, Algaba A, et al. Re-induction with intravenous ustekinumab in patients with Crohn’s disease and a loss of response to this therapy. Inflamm Bowel Dis. 2022;28(1):41–7. https://doi.org/10.1093/ibd/izab015.

    Article  PubMed  Google Scholar 

  30. Attauabi M, Burisch J, Seidelin JB. Efficacy of ustekinumab for active perianal fistulizing Crohn’s disease: a systematic review and meta-analysis of the current literature. Scand J Gastroenterol. 2021;56(1):53–8. https://doi.org/10.1080/00365521.2020.1854848.

    Article  CAS  PubMed  Google Scholar 

  31. Ruemmele FM, Rosh J, Faubion WA, et al. Efficacy of adalimumab for treatment of perianal fistula in children with moderately to severely active Crohn’s disease: results from IMAgINE 1 and IMAgINE 2. J Crohns Colitis. 2018;12(10):1249–54. https://doi.org/10.1093/ecco-jcc/jjy087.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Papamichael K, VandeCasteele N, Jeyarajah J, Jairath V, Osterman MT, Cheifetz AS. Higher postinduction infliximab concentrations are associated with improved clinical outcomes in fistulizing Crohn’s disease: an ACCENT-II post hoc analysis. Am J Gastroenterol. 2021;116(5):1007–14. https://doi.org/10.14309/ajg.0000000000001111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D’Haens G, Panaccione R, Baert F, et al. Risankizumab as induction therapy for Crohn’s disease: results from the phase 3 ADVANCE and MOTIVATE induction trials. Lancet. 2022;399(10340):2015–30. https://doi.org/10.1016/S0140-6736(22)00467-6.

    Article  CAS  PubMed  Google Scholar 

  34. Ferrante M, Panaccione R, Baert F, et al. Risankizumab as maintenance therapy for moderately to severely active Crohn’s disease: results from the multicentre, randomised, double-blind, placebo-controlled, withdrawal phase 3 FORTIFY maintenance trial. Lancet. 2022;399(10340):2031–46. https://doi.org/10.1016/S0140-6736(22)00466-4.

    Article  CAS  PubMed  Google Scholar 

  35. Fumery M, Defrance A, Roblin X, et al. Effectiveness and safety of risankizumab induction therapy for 100 patients with Crohn’s disease: a GETAID multicentre cohort study. Aliment Pharmacol Ther. 2023;57(4):426–34. https://doi.org/10.1111/apt.17358.

    Article  CAS  PubMed  Google Scholar 

  36. Sands BE, Peyrin-Biroulet L, Kierkus J, et al. Efficacy and safety of mirikizumab in a randomized phase 2 study of patients with Crohn’s disease. Gastroenterology. 2022;162(2):495–508. https://doi.org/10.1053/j.gastro.2021.10.050.

    Article  CAS  PubMed  Google Scholar 

  37. Sandborn WJ, D’Haens GR, Reinisch W, et al. Guselkumab for the treatment of Crohn’s disease: induction results from the phase 2 GALAXI-1 Study. Gastroenterology. 2022;162(6): 1650–64.e8. https://doi.org/10.1053/j.gastro.2022.01.047.

    Article  CAS  Google Scholar 

  38. Panes J, Sandborn WJ, Schreiber S, et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut. 2017;66(6):1049–59. https://doi.org/10.1136/gutjnl-2016-312735.

    Article  CAS  PubMed  Google Scholar 

  39. Lee SD, Singla A, Harper J, et al. Tofacitinib appears well tolerated and effective for the treatment of patients with refractory Crohn’s disease. Dig Dis Sci. 2022;67(8):4043–8. https://doi.org/10.1007/s10620-022-07444-5.

    Article  CAS  PubMed  Google Scholar 

  40. Fenster M, Alayo QA, Khatiwada A, et al. Real-world effectiveness and safety of tofacitinib in Crohn’s disease and IBD-U: a multicenter study from the TROPIC Consortium. Clin Gastroenterol Hepatol. 2021;19(10): 2207–9.e3. https://doi.org/10.1016/j.cgh.2020.10.025.

    Article  CAS  Google Scholar 

  41. Collen LV. Rapid clinical remission with upadacitinib in a pediatric patient with refractory Crohn’s disease. Inflamm Bowel Dis. 2023;29(7):1175–6. https://doi.org/10.1093/ibd/izad048.

    Article  PubMed  Google Scholar 

  42. Sandborn WJ, Feagan BG, Loftus EV Jr, et al. Efficacy and safety of upadacitinib in a randomized trial of patients with Crohn’s disease. Gastroenterology. 2020;158(8): 2123–38.e8. https://doi.org/10.1053/j.gastro.2020.01.047.

    Article  CAS  Google Scholar 

  43. D’Haens G, Panes J, Louis E, et al. Upadacitinib was efficacious and well-tolerated over 30 months in patients with Crohn’s disease in the CELEST Extension Study. Clin Gastroenterol Hepatol. 2022;20(10): 2337–46.e3. https://doi.org/10.1016/j.cgh.2021.12.030.

    Article  CAS  Google Scholar 

  44. Loftus EV Jr, Panes J, Lacerda AP, et al. Upadacitinib induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2023;388(21):1966–80. https://doi.org/10.1056/NEJMoa2212728.

    Article  CAS  PubMed  Google Scholar 

  45. Feagan BG, Danese S, Loftus EV Jr, et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): a phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet. 2021;397(10292):2372–84. https://doi.org/10.1016/S0140-6736(21)00666-8.

    Article  CAS  PubMed  Google Scholar 

  46. Vermeire S, Schreiber S, Petryka R, et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet. 2017;389(10066):266–75. https://doi.org/10.1016/S0140-6736(16)32537-5.

    Article  CAS  PubMed  Google Scholar 

  47. D’Haens GR, Lee S, Taylor SA, et al. Filgotinib for the treatment of small bowel Crohn’s disease: the DIVERGENCE 1 Trial. Gastroenterology. 2023;165(1): 289–92.e3. https://doi.org/10.1053/j.gastro.2023.03.234.

    Article  CAS  Google Scholar 

  48. Feagan BG, Sandborn WJ, Danese S, et al. Ozanimod induction therapy for patients with moderate to severe Crohn’s disease: a single-arm, phase 2, prospective observer-blinded endpoint study. Lancet Gastroenterol Hepatol. 2020;5(9):819–28. https://doi.org/10.1016/S2468-1253(20)30188-6.

    Article  PubMed  Google Scholar 

  49. Feagan BG, Schreiber S, Afzali A, et al. Ozanimod as a novel oral small molecule therapy for the treatment of Crohn’s disease: the YELLOWSTONE clinical trial program. Contemp Clin Trials. 2022;122: 106958. https://doi.org/10.1016/j.cct.2022.106958.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Singh N, Rabizadeh S, Jossen J, et al. Multi-center experience of vedolizumab effectiveness in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(9):2121–6. https://doi.org/10.1097/MIB.0000000000000865.

    Article  PubMed  Google Scholar 

  51. Vermeire S, D’Haens G, Baert F, et al. Efficacy and safety of subcutaneous vedolizumab in patients with moderately to severely active Crohn’s disease: results from the VISIBLE 2 randomised trial. J Crohns Colitis. 2022;16(1):27–38. https://doi.org/10.1093/ecco-jcc/jjab133.

    Article  PubMed  Google Scholar 

  52. Dulai PS, Amiot A, Peyrin-Biroulet L, et al. A clinical decision support tool may help to optimise vedolizumab therapy in Crohn’s disease. Aliment Pharmacol Ther. 2020;51(5):553–64. https://doi.org/10.1111/apt.15609.

    Article  CAS  PubMed  Google Scholar 

  53. Park J, Chun J, Yoon H, Cheon JH. Feasibility of a clinical dDecision support tool for ustekinumab to predict clinical remission and relapse in patients with Crohn’s disease: a multicenter observational study. Inflamm Bowel Dis. 2023;29(4):548–54. https://doi.org/10.1093/ibd/izac105.

    Article  PubMed  Google Scholar 

  54. Ananthakrishnan AN, Luo C, Yajnik V, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe. 2017;21(5): 603–10.e3. https://doi.org/10.1016/j.chom.2017.04.010.

    Article  CAS  Google Scholar 

  55. Doherty MK, Ding T, Koumpouras C, et al. Fecal microbiota signatures are associated with response to ustekinumab therapy among Crohn’s disease patients. MBio. 2018;9(2): e02120–17. https://doi.org/10.1128/mBio.02120-17.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Winter DA, Joosse ME, de Wildt SN, Taminiau J, de Ridder L, Escher JC. Pharmacokinetics, pharmacodynamics, and immunogenicity of infliximab in pediatric inflammatory bowel disease: a systematic review and revised dosing considerations. J Pediatr Gastroenterol Nutr. 2020;70(6):763–76. https://doi.org/10.1097/MPG.0000000000002631.

    Article  PubMed  Google Scholar 

  57. Grossi V, Lerer T, Griffiths A, et al. Concomitant use of immunomodulators affects the durability of infliximab therapy in children with Crohn’s disease. Clin Gastroenterol Hepatol. 2015;13(10):1748–56. https://doi.org/10.1016/j.cgh.2015.04.010.

    Article  CAS  PubMed  Google Scholar 

  58. Kappelman MD, Wohl DA, Herfarth HH, et al. Comparative effectiveness of anti-TNF in combination with low-dose methotrexate vs anti-TNF monotherapy in pediatric Crohn’s disease: a peagmatic randomized yrial. Gastroenterology. 2023;165(1): 149–61.e7. https://doi.org/10.1053/j.gastro.2023.03.224.

    Article  CAS  Google Scholar 

  59. Plevris N, Lyons M, Jenkinson PW, et al. Higher adalimumab drug levels during maintenance therapy for Crohn’s disease are associated with biologic remission. Inflamm Bowel Dis. 2019;25(6):1036–43. https://doi.org/10.1093/ibd/izy320.

    Article  PubMed  Google Scholar 

  60. Wilson A, Choi B, Sey M, Ponich T, Beaton M, Kim RB. High infliximab trough concentrations are associated with sustained histologic remission in inflammatory bowel disease: a prospective cohort study. BMC Gastroenterol. 2021;21(1):77. https://doi.org/10.1186/s12876-021-01650-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Assa A, Dorfman L, Shouval DS, Shamir R, Cohen S. Therapeutic drug monitoring-guided high-dose infliximab for infantile-onset inflammatory bowel disease: a case series. J Pediatr Gastroenterol Nutr. 2020;71(4):516–20. https://doi.org/10.1097/MPG.0000000000002832.

    Article  CAS  PubMed  Google Scholar 

  62. Jongsma MME, Winter DA, Huynh HQ, et al. Infliximab in young paediatric IBD patients: it is all about the dosing. Eur J Pediatr. 2020;179(12):1935–44. https://doi.org/10.1007/s00431-020-03750-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dreesen E, Verstockt B, Bian S, et al. Evidence to support monitoring of vedolizumab trough concentrations in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2018;16(12): 1937–46.e8. https://doi.org/10.1016/j.cgh.2018.04.040.

    Article  CAS  Google Scholar 

  64. Hanzel J, Zdovc J, Kurent T, et al. Peak concentrations of ustekinumab after intravenous induction therapy identify patients with Crohn’s disease likely to achieve endoscopic and biochemical remission. Clin Gastroenterol Hepatol. 2021;19(1): 111–8.e10. https://doi.org/10.1016/j.cgh.2020.02.033.

    Article  CAS  Google Scholar 

  65. Verstockt B, Dreesen E, Noman M, et al. Ustekinumab exposure-outcome analysis in Crohn’s disease only in part explains limited endoscopic remission rates. J Crohns Colitis. 2019;13(7):864–72. https://doi.org/10.1093/ecco-jcc/jjz008.

    Article  PubMed  Google Scholar 

  66. Ahmed W, Galati J, Kumar A, et al. Dual biologic or small molecule therapy for treatment of inflammatory bowel disease: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2022;20(3): e361–79. https://doi.org/10.1016/j.cgh.2021.03.034.

    Article  CAS  Google Scholar 

  67. Yang E, Panaccione N, Whitmire N, et al. Efficacy and safety of simultaneous treatment with two biologic medications in refractory Crohn’s disease. Aliment Pharmacol Ther. 2020;51(11):1031–8. https://doi.org/10.1111/apt.15719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kwapisz L, Raffals LE, Bruining DH, et al. Combination biologic therapy in inflammatory bowel disease: experience from a tertiary care center. Clin Gastroenterol Hepatol. 2021;19(3):616–7. https://doi.org/10.1016/j.cgh.2020.02.017.

    Article  PubMed  Google Scholar 

  69. Dolinger MT, Spencer EA, Lai J, Dunkin D, Dubinsky MC. Dual biologic and small molecule therapy for the treatment of refractory pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2021;27(8):1210–4. https://doi.org/10.1093/ibd/izaa277.

    Article  PubMed  Google Scholar 

  70. Wlazlo M, Meglicka M, Wiernicka A, Osiecki M, Kierkus J. Dual biologic therapy in moderate to severe pediatric inflammatory Bbwel disease: a retrospective study. Children (Basel). 2022;10(1):11. https://doi.org/10.3390/children10010011.

    Article  PubMed  Google Scholar 

  71. Howard G, Weiner D, Bar-Or I, Levine A. Dual biologic therapy with vedolizumab and ustekinumab for refractory Crohn’s disease in children. Eur J Gastroenterol Hepatol. 2022;34(4):372–4. https://doi.org/10.1097/MEG.0000000000002203.

    Article  CAS  PubMed  Google Scholar 

  72. Lightner AL, Otero-Pineiro A, Reese J, et al. A phase I study of ex vivo expanded allogeneic bone marrow-derived mesenchymal stem cells for the treatment of pediatric perianal fistulizing Crohn’s disease. Inflamm Bowel Dis. 2023. https://doi.org/10.1093/ibd/izad100.

    Article  PubMed  Google Scholar 

  73. Garcia-Olmo D, Gilaberte I, Binek M, et al. Follow-up study to evaluate the long-term safety and efficacy of darvadstrocel (mesenchymal stem cell treatment) in patients with perianal fistulizing Crohn’s disease: ADMIRE-CD phase 3 randomized controlled trial. Dis Colon Rectum. 2022;65(5):713–20. https://doi.org/10.1097/DCR.0000000000002325.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Carvello M, Lightner A, Yamamoto T, Kotze PG, Spinelli A. Mesenchymal stem cells for perianal Crohn’s disease. Cells. 2019;8(7):764. https://doi.org/10.3390/cells8070764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vieujean S, Loly JP, Boutaffala L, et al. Mesenchymal stem cell injection in Crohn’s disease strictures: a phase I–II clinical study. J Crohns Colitis. 2022;16(3):506–10. https://doi.org/10.1093/ecco-jcc/jjab154.

    Article  PubMed  Google Scholar 

  76. Dulai PS, Gleeson MW, Taylor D, Holubar SD, Buckey JC, Siegel CA. Systematic review: the safety and efficacy of hyperbaric oxygen therapy for inflammatory bowel disease. Aliment Pharmacol Ther. 2014;39(11):1266–75. https://doi.org/10.1111/apt.12753.

    Article  CAS  PubMed  Google Scholar 

  77. Hasan B, Yim Y, Ur Rashid M, et al. Hyperbaric oxygen therapy in chronic inflammatory conditions of the pouch. Inflamm Bowel Dis. 2021;27(7):965–70. https://doi.org/10.1093/ibd/izaa245.

    Article  PubMed  Google Scholar 

  78. Kante B, Sahu P, Kedia S, et al. Efficacy and tolerability of hyperbaric oxygen therapy in small bowel stricturing Crohn’s disease: a pilot study. Intest Res. 2022;20(2):231–9. https://doi.org/10.5217/ir.2021.00056.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lansdorp CA, Gecse KB, Buskens CJ, et al. Hyperbaric oxygen therapy for the treatment of perianal fistulas in 20 patients with Crohn’s disease. Aliment Pharmacol Ther. 2021;53(5):587–97. https://doi.org/10.1111/apt.16228.

    Article  CAS  PubMed  Google Scholar 

  80. Lansdorp CA, Buskens CJ, Gecse KB, et al. Hyperbaric oxygen therapy for the treatment of perianal fistulas in 20 patients with Crohn’s disease: results of the HOT-TOPIC trial after 1-year follow-up. United Eur Gastroenterol J. 2022;10(2):160–8. https://doi.org/10.1002/ueg2.12189.

    Article  CAS  Google Scholar 

  81. Lansdorp CA, Buskens CJ, Gecse KB, D’Haens G, van Hulst RA. Hyperbaric oxygen therapy for the treatment of rectovaginal fistulas in patients with Crohn’s disease: results of the HOT-REVA pilot study. BJS Open. 2021;5(3): zrab042. https://doi.org/10.1093/bjsopen/zrab042.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Green MS, Purohi M, Sadacharam K, Mychaskiw G. Efficacy of hyperbaric oxygen in patients with Crohn’s disease: two case reports. Undersea Hyperb Med. 2013;40(2):201–4.

    PubMed  Google Scholar 

  83. Sharma Y, Bousvaros A, Liu E, Bender SJ. Natural history of children with mild Crohn’s disease. World J Gastroenterol. 2019;25(30):4235–45. https://doi.org/10.3748/wjg.v25.i30.4235.

    Article  PubMed  PubMed Central  Google Scholar 

  84. SigallBoneh R, Van Limbergen J, Wine E, et al. Dietary therapies induce rapid response and remission in pediatric patients with active Crohn’s disease. Clin Gastroenterol Hepatol. 2021;19(4):752–9. https://doi.org/10.1016/j.cgh.2020.04.006.

    Article  CAS  Google Scholar 

  85. Sohouli MH, Fatahi S, Farahmand F, Alimadadi H, Seraj SS, Rohani P. Meta-analysis: efficacy of exclusive enteral nutrition as induction therapy on disease activity index, inflammation and growth factors in paediatric Crohn’s disease. Aliment Pharmacol Ther. 2022;56(3):384–95. https://doi.org/10.1111/apt.17109.

    Article  CAS  PubMed  Google Scholar 

  86. Cuomo M, Carobbio A, Aloi M, et al. Induction of remission with exclusive enteral nutrition in children with Crohn’s disease: determinants of higher adherence and response. Inflamm Bowel Dis. 2022. https://doi.org/10.1093/ibd/izac215.

    Article  Google Scholar 

  87. Lee D, Baldassano RN, Otley AR, et al. Comparative effectiveness of nutritional and biological therapy in North American children with active Crohn’s disease. Inflamm Bowel Dis. 2015;21(8):1786–93. https://doi.org/10.1097/MIB.0000000000000426.

    Article  PubMed  Google Scholar 

  88. Chen JM, He LW, Yan T, et al. Oral exclusive enteral nutrition induces mucosal and transmural healing in patients with Crohn’s disease. Gastroenterol Rep (Oxf). 2019;7(3):176–84. https://doi.org/10.1093/gastro/goy050.

    Article  PubMed  Google Scholar 

  89. Levine A, Wine E, Assa A, et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology. 2019;157(2): 440–50.e8. https://doi.org/10.1053/j.gastro.2019.04.021.

    Article  Google Scholar 

  90. Cohen SA, Gold BD, Oliva S, et al. Clinical and mucosal improvement with specific carbohydrate diet in pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2014;59(4):516–21. https://doi.org/10.1097/MPG.0000000000000449.

    Article  CAS  PubMed  Google Scholar 

  91. Suskind DL, Lee D, Kim YM, et al. The specific carbohydrate diet and diet modification as induction therapy for pediatric Crohn’s disease: a randomized diet controlled trial. Nutrients. 2020;12(12):3749. https://doi.org/10.3390/nu12123749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lewis JD, Sandler RS, Brotherton C, et al. A randomized trial comparing the specific carbohydrate diet to a Mediterranean diet in adults with Crohn’s disease. Gastroenterology. 2021;161(3): 837–52.e9. https://doi.org/10.1053/j.gastro.2021.05.047.

    Article  CAS  Google Scholar 

  93. Pavlov VA, Chavan SS, Tracey KJ. Bioelectronic medicine: from preclinical studies on the inflammatory reflex to new approaches in disease diagnosis and treatment. Cold Spring Harb Perspect Med. 2020;10(3): a034140. https://doi.org/10.1101/cshperspect.a034140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sinniger V, Pellissier S, Fauvelle F, et al. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn’s disease. Neurogastroenterol Motil. 2020;32(10): e13911. https://doi.org/10.1111/nmo.13911.

    Article  CAS  PubMed  Google Scholar 

  95. Sahn B, Lu Y, Hui-Yuen JS, et al. The safety of COVID-19 vaccination in immunocompromised children and young adults with immune-mediated inflammatory disease. Acta Paediatr. 2022;112(4):794–881. https://doi.org/10.1111/apa.16652.

    Article  CAS  Google Scholar 

  96. Turner D, Griffiths AM, Wilson D, et al. Designing clinical trials in paediatric inflammatory bowel diseases: a PIBDnet commentary. Gut. 2020;69(1):32–41. https://doi.org/10.1136/gutjnl-2018-317987.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Sahn.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of Interest

Julie Gallagher, Joel R. Rosh, and Benjamin Sahn have no conflicts of interest that are directly related to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Data Availability

Not applicable.

Code Availability

Not applicable.

Author Contributions

JG: conceptualization: lead; methodology: lead; writing, original draft: lead; writing, review and editing: lead. JR: conceptualization: support; writing, original draft: support; writing, review and editing: support. BS: conceptualization: lead; supervision: lead; writing, original draft: support; writing, review and editing: support.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, J., Rosh, J.R. & Sahn, B. The Future of Advanced Therapies for Pediatric Crohn’s Disease. Pediatr Drugs 25, 621–633 (2023). https://doi.org/10.1007/s40272-023-00590-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-023-00590-x

Navigation