Skip to main content

Advertisement

Log in

ChemFlow_py: a flexible toolkit for docking and rescoring

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The design of accurate virtual screening tools is an open challenge in drug discovery. Several structure-based methods have been developed at different levels of approximation. Among them, molecular docking is an established technique with high efficiency, but typically low accuracy. Moreover, docking performances are known to be target-dependent, which makes the choice of the docking program and corresponding scoring function critical when approaching a new protein target. To compare the performances of different docking protocols, we developed ChemFlow_py, an automated tool to perform docking and rescoring. Using four protein systems extracted from DUD-E with 100 known active compounds and 3000 decoys per target, we compared the performances of several rescoring strategies including consensus scoring. We found that the average docking results can be improved by consensus ranking, which emphasizes the relevance of consensus scoring when little or no chemical information is available for a given target. ChemFlow_py is a free toolkit to optimize the performances of virtual high-throughput screening (vHTS). The software is publicly available at https://github.com/IFMlab/ChemFlow_py.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hughes J, Rees S, Kalindjian S, Philpott eK (2011) Principles of early drug discovery: principles of early drug discovery. Br. J. Pharmacol. 162(fasc. 6):1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sliwoski G, Kothiwale S, Meiler J, Lowe EEW (2014) Computational Methods in Drug Discovery. Pharmacol. Rev. 66(fasc. 66):334–395. https://doi.org/10.1124/pr.112.007336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Stanzione F, Giangreco I, Cole eJC (2021) Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry. Elsevier, Amsterdam, pp 273–343. https://doi.org/10.1016/bs.pmch.2021.01.004

    Chapter  Google Scholar 

  4. Montalvo-Acosta JJ, Cecchini eM (2016) Computational approaches to the chemical equilibrium constant in protein-ligand binding. Molecular Informatics. https://doi.org/10.1002/minf.2016000528

    Article  PubMed  Google Scholar 

  5. Lionta E, Spyrou G, Vassilatis D, Cournia EZ (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(fasc. 16):1923–1938. https://doi.org/10.2174/1568026614666140929124445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Crampon K, Giorkallos A, Deldossi M, Baud S, Steffenel ELA (2022) Machine-learning methods for ligand–protein molecular docking. Drug Discov Today 27(fasc. 1):151–164. https://doi.org/10.1016/j.drudis.2021.09.007

    Article  PubMed  CAS  Google Scholar 

  7. Majeux N, Scarsi M, Apostolakis J, Ehrhardt C, Caflisch eA (1999) Exhaustive docking of molecular fragments with electrostatic solvation. Proteins Struct Funct Genet 3(1):88–105

    Article  Google Scholar 

  8. McNutt AT et al (2021) GNINA 1.0: molecular docking with deep learning. J. Cheminformatics 13(1):43. https://doi.org/10.1186/s13321-021-00522-2

    Article  Google Scholar 

  9. Palacio-Rodríguez K, Lans I, Cavasotto CN, Cossio eP (2019) Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci Rep 9(1):5142. https://doi.org/10.1038/s41598-019-41594-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kurkinen ST, Lätti S, Pentikäinen OT, Postila ePA (2019) Getting docking into shape using negative image-based rescoring. J Chem Inf Model 59(8):3584–3599. https://doi.org/10.1021/acs.jcim.9b00383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Launay G et al (2020) Evaluation of CONSRANK-like scoring functions for rescoring ensembles of protein-protein docking poses. Front Mol Biosci 7:559005. https://doi.org/10.3389/fmolb.2020.559005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pereira GP, Cecchini eM (2021) Multibasin quasi-harmonic approach for the calculation of the configurational entropy of small molecules in solution. J Chem Theory Comput 17(2):1133–1142. https://doi.org/10.1021/acs.jctc.0c00978

    Article  PubMed  CAS  Google Scholar 

  13. Charifson PS, Corkery JJ, Murcko MA, Walters EWP (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42(25):5100–5109. https://doi.org/10.1021/jm990352k

    Article  PubMed  CAS  Google Scholar 

  14. Oda A, Tsuchida K, Takakura T, Yamaotsu N, Hirono eS (2006) Comparison of consensus scoring strategies for evaluating computational models of protein−ligand complexes. J Chem Inf Model. 46:380–391. https://doi.org/10.1021/ci050283k

    Article  PubMed  CAS  Google Scholar 

  15. Kukol A (2011) Consensus virtual screening approaches to predict protein ligands. Eur J Med Chem 46(9):4661–4664. https://doi.org/10.1016/j.ejmech.2011.05.026

    Article  PubMed  CAS  Google Scholar 

  16. Pinzi L, Rastelli eG (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20(18):4331. https://doi.org/10.3390/ijms20184331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Abraham MJ et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  18. Mysinger MM, Carchia M, Irwin JJ, Shoichet eBK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. https://doi.org/10.1021/jm300687e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Barreto Gomes DE, Galentino K, Sisquellas M, Monari L, Bouysset C, Cecchini eM (2023) ChemFlow─From 2D chemical libraries to protein-ligand binding free energies. J Chem Inf Model 63(2):407–411. https://doi.org/10.1021/acs.jcim.2c00919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Morgan HL (1965) The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J Chem Doc 5:107–113. https://doi.org/10.1021/c160017a018

    Article  CAS  Google Scholar 

  21. Bajusz D, Rácz A, Héberger eK (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminformatics 7(1):20. https://doi.org/10.1186/s13321-015-0069-3

    Article  CAS  Google Scholar 

  22. Butina D (1999) Unsupervised data base clustering based on daylight’s fingerprint and Tanimoto similarity: a fast and automated way to cluster small and large data sets. J Chem Inf Comput Sci 39(4):747–750. https://doi.org/10.1021/ci98033814

    Article  CAS  Google Scholar 

  23. Morris GM et al (2009) AutoDock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Trott O, Olson eAJ (2009) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  25. Korb O, Stützle T, Exner ETE (2006) PLANTS: application of ant colony optimization to structure-based drug design. In: Dorigo M, Gambardella LM, Birattari M, Martinoli A, Poli R, Stützle ET (eds) Ant Colony optimization and swarm intelligence. Lecture notes in computer science. Springer, Heidelberg, pp 247–258. https://doi.org/10.1007/11839088_22

    Chapter  Google Scholar 

  26. Koes DR, Baumgartner MP, Camacho eCJ (2013) Lessons learned in empirical scoring with Smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 53(8):1893–1904. https://doi.org/10.1021/ci300604z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Alhossary A, Handoko SD, Mu Y, Kwoh eC-K (2015) Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 31(13):2214–2216. https://doi.org/10.1093/bioinformatics/btv082

    Article  PubMed  CAS  Google Scholar 

  28. Korb O, Stützle T, Exner eTE (2009) Empirical scoring functions for advanced protein−ligand docking with PLANTS. J Chem Inf Model 49(1):84–96. https://doi.org/10.1021/ci800298z

    Article  PubMed  CAS  Google Scholar 

  29. Guedes IA, Pereira FSS, Dardenne eLE (2018) Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front Pharmacol 9:1089. https://doi.org/10.3389/fphar.2018.01089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Quiroga R, Villarreal eMA (2016) Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLOS ONE 11(5):e0155183. https://doi.org/10.1371/journal.pone.0155183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu S, Fu R, Zhou L-H, Chen ES-P (2012) Application of consensus scoring and principal component analysis for virtual screening against β-secretase (BACE-1). PLoS ONE 7(6):e38086. https://doi.org/10.1371/journal.pone.0038086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cavasotto CN, Kovacs JA, Abagyan eRA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127(26):9632–9640. https://doi.org/10.1021/ja042260c

    Article  PubMed  CAS  Google Scholar 

  33. Mandrekar JN (2010) Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 5(9):1315–1316. https://doi.org/10.1097/JTO.0b013e3181ec173d

    Article  PubMed  Google Scholar 

  34. Sisquellas M, Cecchini eM (2021) PrepFlow: a toolkit for chemical library preparation and management for virtual screening. Mol Inform 40(12):2100139. https://doi.org/10.1002/minf.202100139

    Article  CAS  Google Scholar 

  35. Gentile F et al (2020) Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci 6(6):939–949. https://doi.org/10.1021/acscentsci.0c00229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang R, Wang eS (2001) How does consensus scoring work for virtual library screening? an idealized computer experiment. J Chem Inf Comput Sci 41(5):1422–1426. https://doi.org/10.1021/ci010025x

    Article  PubMed  CAS  Google Scholar 

  37. Gentile F et al (2021) Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules. Chem Sci 12(48):15960–15974. https://doi.org/10.1039/D1SC05579H

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Masters L, Eagon S, Heying eM (2020) Evaluation of consensus scoring methods for AutoDock Vina, smina and idock. J. Mol. Graph. Model. 96:107532. https://doi.org/10.1016/j.jmgm.2020.107532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the French National Research Agency (ANR) through the Programme d'Investissement d'Avenir under contract 17-EURE- 0016 and received financial support from the Fondation pour la Recherche Med́icale (Grant DBI20141231319). The project received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie Grant Agreement 956314 [ALLODD]. Computational resources and support at the high-performance computing center (Mesocentre) of the University of Strasbourg are gratefully acknowledged.

Funding

Funding was supported by Agence Nationale de la Recherche,17-EURE-0016, Fondation pour la Recherche Medicale,DBI20141231319, and European Union’s Horizon 2020, 956314 [ALLODD].

Author information

Authors and Affiliations

Authors

Contributions

L.M. and M.C. conceived the study, designed the simulation protocol, analysed the data and wrote the main manuscript text. L.M. and K.G. performed the experiments and wrote the code. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Marco Cecchini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 954 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monari, L., Galentino, K. & Cecchini, M. ChemFlow_py: a flexible toolkit for docking and rescoring. J Comput Aided Mol Des 37, 565–572 (2023). https://doi.org/10.1007/s10822-023-00527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00527-z

Keywords

Navigation