Skip to main content
Log in

Magnetically tuned THz radiation through the HA-HA-CNTs under the effect of a transverse electric field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present theoretical analysis, we have demonstrated the magnetically tuned terahertz (THz) wave generation through the structure of hollow anharmonic horizontally aligned carbon nanotubes (HA-HA-CNTs) grown and embedded over the dielectric substrate under the effect of an externally applied transverse static electric field. Two transversely co-propagating amplitude-modulated (AM) filamented laser beams interact with this structure of HA-HA-CNTs under the combined effect of the externally applied static electric and magnetic fields, acting mutually perpendicular to each other as well as to the direction of propagation of the AM filamented laser beams. The novelty in our scheme is the use of non-uniform distribution of electrons in CNTs, whereas most of the research workers have chosen a uniform distribution of electrons in CNTs. Due to this, the restoration force experienced by the electrons of CNTs is not the same, but it becomes different for every electron of CNTs, and this results in anharmonicity. This anharmonicity in CNTs helps to broaden the resonance peak. The laser beams also exert the static and beat frequency nonlinear ponderomotive forces on the electrons of HA-HA-CNTs in such a way that the static nonlinear ponderomotive force is balanced by the pressure gradient force to form a transverse density ripple of zero frequency, whereas beat frequency nonlinear ponderomotive force is responsible for the THz generation through the HA-HA-CNTs. Nonlinear coupling between the drift velocity of the electrons and the density of electrons present in the plasma structure of HA-HA-CNTs results in the enhancement of THz generation. We have also found that the normalized THz field amplitude obtained at the resonance frequency point shows a significant enhancement with the increase of externally applied electric field in the steps of \({\text{5 kV cm}}^{ - 1}\) starting from \({5 }\) to \({\text{15 kV cm}}^{ - 1} ,\) and magnetic field in the steps of \({\text{5 kG}}\) \({\text{starting from 10 }}\) to \({\text{20 kG}}{.}\) The emitted THz radiations can be proved useful to detect bacterial and cell hydration states in the medical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X Fu, Y Liu, Q Chen, Y Fu and T J Cui Front Phys 10 427 (2022)

    Google Scholar 

  2. B Bernáth, P Gogoi, A Marchese, D Kamenskyi, H Engelkamp, D Arslanov and B Redlich Rev. B 105 205204 (2022)

    Article  Google Scholar 

  3. V Thakur, S Vij, N Kant and S Kumar Indian J Phys 97 2191 (2023). https://doi.org/10.1007/s12648-022-02575-x

    Article  CAS  Google Scholar 

  4. D Kaplan and T Holder Rev. Res 4 013209 (2022)

    CAS  Google Scholar 

  5. Q Zhang, E H Hároz, Z Jin, L Ren, X Wang, R S Arvidson and J Kono Nano lett 13 5991 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. S Kumar, S Vij, N Kant and V Thakur Plasmonics 17 381 (2021)

    Article  Google Scholar 

  7. S Kumar, V Thakur and N Kant Physica Scripta 98 085506 (2023)

  8. S Kumar, S Vij, N Kant and V Thakur Opt. Commun. 513 128112 (2022)

  9. S Kumar, S Vij, N Kant and V Thakur Chin. J. Phys. 78 453 (2022)

    Article  CAS  Google Scholar 

  10. S Kumar, N Kant and V Thakur Opt Quant Electron 55 281 (2023)

    Article  CAS  Google Scholar 

  11. J Parashar and H Sharma Physica E. 44 2069 (2012)

    Article  CAS  Google Scholar 

  12. L V Titova, C L Pint, Q Zhang, R H Hauge, J Kono and F A Hegmann Nano letters 15 3267 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. S Kumar, S Vij, N Kant and V Thakur Physica Scripta 98 015015 (2022)

    Article  Google Scholar 

  14. D Dragoman Syst. Nanostruct. 25 492 (2005)

    CAS  Google Scholar 

  15. M E Portnoi, O V Kibis and M R Da Costa Superlattices Microstruct 43 399 (2008)

    Article  CAS  Google Scholar 

  16. K G Batrakov, O V Kibis, P P Kuzhir, M R Da Costa and M E Portnoi J Nanophotonics 4 041665 (2010)

    Article  Google Scholar 

  17. Y Wang and Q Wu Chin Opt Lett 6 770 (2008)

    Article  Google Scholar 

  18. S Kumar, S Vij, N Kant, A Mehta and V Thakur Euro. Phys. J. Plus 136 148 (2021)

    Article  CAS  Google Scholar 

  19. S Kumar, S Vij, N Kant and V Thakur J. Astrophys. Astron. 43 30 (2022). https://doi.org/10.1007/s12036-022-09805-y

    Article  CAS  Google Scholar 

  20. A Houard, Y Liu, B Prade, V T Tikhonchuk and A Mysyrowicz Phys Rev Lett 100 255006 (2008)

    Article  PubMed  Google Scholar 

  21. S Y Tochitsky Soc. Am. B 24 2509 (2007)

    Article  CAS  Google Scholar 

  22. Z F Ren, Z P Huang, J W Xu, J H Wang, P Bush and M P Siegal P N Provencio Sci 282 1105 (1998)

    CAS  Google Scholar 

  23. H Dai Surf Sci 500 218 (2002)

    Article  CAS  Google Scholar 

  24. S Reich, C Thomson and J Maultzsch. Carbon nanotubes: Basic Concepts and physical properties. Wiley VCH 65–78 (2004)

  25. W Lu and D Wang L Chen Nano Lett. 7 2729 (2007)

    Article  CAS  Google Scholar 

  26. S Kumar, S Vij, N Kant and V Thakur Braz. J. Phys. 53 37 (2023)

    Article  CAS  Google Scholar 

  27. P Varshnety, V Sajal, P Chauhan, R Kumar and N K Sharma Laser Particle Beams 32 375 (2014)

    Article  CAS  Google Scholar 

  28. S Jain Nano Lett. 3 5326 (2013)

    Google Scholar 

  29. S Kumar, S Vij, N Kant and V Thakur Waves Random Complex Med (2022). https://doi.org/10.1080/17455030.2022.2155330

    Article  Google Scholar 

  30. V Thakur, N Kant and S Kumar Trends Sci 20 5284 (2023)

    Article  Google Scholar 

  31. J Kono and S Roche. Magnetic properties carbon nanotubes: Properties and applications. ed O’Connell M J (Boca Raton: CRC Press, Taylor & Francis Group) 5 119–1519 (2006)

  32. J Kono, R J Nicholas and S Roche. High magnetic field phenomena in carbon nanotubes Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications ed Jorio A, Dresselhaus G and Dresselhaus M S (Berlin: Springer) 393–421 (2008)

  33. M Dragoman, K Grenier, D Dubuc, L Bary and E Fourn Phys. Lett. 88 153108 (2006)

    Google Scholar 

  34. A Markelz Phys. Lett. 320 42 (2000)

    CAS  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

SK did derivation, methodology, analytical modeling, graph plotting, original draft preparation, and writing with numerical calculations; NK done numerical analysis and result discussion; VT reviewed and edited the study.

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethics approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kant, N. & Thakur, V. Magnetically tuned THz radiation through the HA-HA-CNTs under the effect of a transverse electric field. Indian J Phys 98, 1139–1145 (2024). https://doi.org/10.1007/s12648-023-02849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02849-y

Keywords

Navigation