Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Exogenous Apelin-13 Administration Ameliorates Cyclophosphamide- Induced Oxidative Stress, Inflammation, and Apoptosis in Rat Lungs

Author(s): Arzu Keskin-Aktan* and Özden Kutlay

Volume 30, Issue 9, 2023

Published on: 22 September, 2023

Page: [743 - 753] Pages: 11

DOI: 10.2174/0929866530666230824142516

Price: $65

Abstract

Background: Apelin-13 is an endogenous adipocytokine known for its antioxidant, antiinflammatory, and antiapoptotic properties.

Objective: We aimed to investigate the possible protective effects of exogenous Apelin-13 administration on oxidative stress, inflammation, and apoptosis induced by the cytotoxic agent cyclophosphamide (CP) in the lungs.

Methods: Twenty-four male Wistar albino rats were divided into four groups: Control (saline), CP (200 mg/kg), Apelin-13 (10 μg/kg/day), and CP+Apelin-13. CP was administered as a single dose on the fifth day, and apelin-13 was administered intraperitoneally for five days. Total oxidant status (TOS), total antioxidant status (TAS), and lipid peroxidation were determined with spectrophotometry, TNFα and IL1β were determined with ELISA, APJ, Sirt1, NF-κB, and p53 mRNA expressions were determined with qRT-PCR, cytochrome (Cyt) C and caspase-3 protein expressions were studied with western blotting in lung tissues. The oxidative stress index (OSI) was also calculated. Furthermore, serum surfactant protein-D (SP-D) and Krebs von den Lungen-6 (KL-6) levels were measured with ELISA.

Results: Compared to the control group, TOS, OSI, lipid peroxidation, TNFα, IL1β, cyt C, caspase-3, APJ, NF-κB, and p53 were higher, and Sirt1 was lower in the lung tissue of rats in the CP group. Serum KL-6 and SP-D levels were higher in the CP group. Co-administration of CP with Apelin-13 completely reversed the changes induced by CP administration.

Conclusion: Exogenous Apelin-13 treatment protected lung tissue against injury by inhibiting cyclophosphamide-induced oxidative stress, inflammation, and apoptosis. This protective effect of apelin-13 was accompanied by upregulation of the Sirt1 and downregulation of NF-κB/p53 in the lungs.

Keywords: Apelin-13, lungs, cyclophosphamide, sirt1, NF-κB, p53.

Graphical Abstract
[1]
Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; Kurokawa, T.; Onda, H.; Fujino, M. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun., 1998, 251(2), 471-476.
[http://dx.doi.org/10.1006/bbrc.1998.9489] [PMID: 9792798]
[2]
O’Carroll, A.M.; Lolait, S.J.; Harris, L.E.; Pope, G.R. The apelin receptor APJ: Journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol., 2013, 219(1), R13-R35.
[http://dx.doi.org/10.1530/JOE-13-0227] [PMID: 23943882]
[3]
Bircan, B.; Çakır, M.; Kırbağ, S.; Gül, H.F. Effect of apelin hormone on renal ischemia/reperfusion induced oxidative damage in rats. Ren. Fail., 2016, 38(7), 1122-1128.
[http://dx.doi.org/10.1080/0886022X.2016.1184957] [PMID: 27197832]
[4]
Zhou, Q.; Cao, J.; Chen, L. Apelin/APJ system: A novel therapeutic target for oxidative stress-related inflammatory diseases. (Review). Int. J. Mol. Med., 2016, 37(5), 1159-1169.
[http://dx.doi.org/10.3892/ijmm.2016.2544] [PMID: 27035220]
[5]
Foussal, C.; Lairez, O.; Calise, D.; Pathak, A.; Guilbeau-Frugier, C.; Valet, P.; Parini, A.; Kunduzova, O. Activation of catalase by apelin prevents oxidative stress-linked cardiac hypertrophy. FEBS Lett., 2010, 584(11), 2363-2370.
[http://dx.doi.org/10.1016/j.febslet.2010.04.025] [PMID: 20398658]
[6]
Pelogeykina, Y.A.; Konovalova, G.G.; Pisarenko, O.I.; Lankin, V.Z. Antioxidant action of apelin-12 peptide and its structural analog in vitro. Bull. Exp. Biol. Med., 2015, 159(5), 604-606.
[http://dx.doi.org/10.1007/s10517-015-3024-4] [PMID: 26459481]
[7]
Saral, S.; Topçu, A.; Alkanat, M.; Mercantepe, T.; Akyıldız, K.; Yıldız, L.; Tümkaya, L.; Yazıcı, Z.A.; Yılmaz, A. Apelin-13 activates the hippocampal BDNF/TrkB signaling pathway and suppresses neuroinflammation in male rats with cisplatin-induced cognitive dysfunction. Behav. Brain Res., 2021, 408(408), 113290.
[http://dx.doi.org/10.1016/j.bbr.2021.113290] [PMID: 33845103]
[8]
El Bakary, N.M.; Thabet, N.M.; El Fatih, N.M.; Abdel-Rafei, M.K.; El Tawill, G.; Azab, K.S. Fucoxanthin alters the apelin-13/APJ pathway in certain organs of γ-irradiated mice. J. Radiat. Res., 2021, 62(4), 600-617.
[http://dx.doi.org/10.1093/jrr/rraa141] [PMID: 33929015]
[9]
Vafaei-Nezhad, S.; Niknazar, S.; Norouzian, M.; Abdollahifar, M.A.; Aliaghaei, A.; Abbaszadeh, H.A. Therapeutics effects of [Pyr1] apelin-13 on rat contusion model of spinal cord injury: An experimental study. J. Chem. Neuroanat., 2021, 113, 101924.
[http://dx.doi.org/10.1016/j.jchemneu.2021.101924] [PMID: 33567298]
[10]
Peng, Q.M.; Zhou, J.H.; Xu, Z.W.; Zhao, Q.C.; Li, Z.Y.; Zhao, Q. Apelin-13 ameliorates LPS-induced BV-2 microglia inflammatory response through promoting autophagy and inhibiting H3K9ac enrichment of TNF-α and IL-6 promoter. Acta Neurobiol. Exp., 2022, 82(1), 65-76.
[http://dx.doi.org/10.55782/ane-2022-006] [PMID: 35451424]
[11]
Zeng, X.; Yu, S.P.; Taylor, T.; Ogle, M.; Wei, L. Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis. Stem Cell Res., 2012, 8(3), 357-367.
[http://dx.doi.org/10.1016/j.scr.2011.12.004] [PMID: 22289418]
[12]
Zhang, H.; Chen, S.; Zeng, M.; Lin, D.; Wang, Y.; Wen, X.; Xu, C.; Yang, L.; Fan, X.; Gong, Y.; Zhang, H.; Kong, X. Apelin-13 administration protects against LPS-induced acute lung injury by inhibiting NF-κB pathway and NLRP3 inflammasome activation. Cell. Physiol. Biochem., 2018, 49(5), 1918-1932.
[http://dx.doi.org/10.1159/000493653] [PMID: 30235451]
[13]
Martins, I.J. Appetite dysregulation and the apelinergic system are connected to the global chronic disease epidemic. Series Endo. Diab. Met., 2020, 1(3), 67-69.
[http://dx.doi.org/10.54178/jsedmv1i3003]
[14]
Khoshsirat, S.; Abbaszadeh, H.; Peyvandi, A.; Heidari, F.; Peyvandi, M.; Simani, L.; Niknazar, S. Apelin-13 prevents apoptosis in the cochlear tissue of noise-exposed rat via Sirt-1 regulation. J. Chem. Neuroanat., 2021, 114, 101956.
[15]
Liu, F.J.; Gu, T.J.; Wei, D.Y. Emodin alleviates sepsis‐mediated lung injury via inhibition and reduction of NF‐kB and HMGB1 pathways mediated by SIRT1. Kaohsiung J. Med. Sci., 2022, 38(3), 253-260.
[http://dx.doi.org/10.1002/kjm2.12476] [PMID: 34806822]
[16]
Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23(12), 2369-2380.
[http://dx.doi.org/10.1038/sj.emboj.7600244] [PMID: 15152190]
[17]
Kumar, A.; Takada, Y.; Boriek, A.; Aggarwal, B. Nuclear factor-kB: Its role in health and disease. J. Mol. Med., 2004, 82(7), 434-448.
[http://dx.doi.org/10.1007/s00109-004-0555-y] [PMID: 15175863]
[18]
Ryan, K.M.; Ernst, M.K.; Rice, N.R.; Vousden, K.H. Role of NF-κB in p53-mediated programmed cell death. Nature, 2000, 404(6780), 892-897.
[http://dx.doi.org/10.1038/35009130] [PMID: 10786798]
[19]
Carrà, G.; Lingua, M.F.; Maffeo, B.; Taulli, R.; Morotti, A. P53 vs NF-κB: The role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell. Mol. Life Sci., 2020, 77(22), 4449-4458.
[http://dx.doi.org/10.1007/s00018-020-03524-9] [PMID: 32322927]
[20]
Colvin, O.M. An overview of cyclophosphamide development and clinical applications. Curr. Pharm. Des., 1999, 5(8), 555-560.
[http://dx.doi.org/10.2174/1381612805666230110214512] [PMID: 10469891]
[21]
Mohammad, M.K.; Avila, D.; Zhang, J.; Barve, S.; Arteel, G.; McClain, C.; Joshi-Barve, S. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol. Appl. Pharmacol., 2012, 265(1), 73-82.
[http://dx.doi.org/10.1016/j.taap.2012.09.021] [PMID: 23026831]
[22]
Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Ali, S.M.; Ali, J.; Haque, S.E. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci., 2019, 218(218), 112-131.
[http://dx.doi.org/10.1016/j.lfs.2018.12.018] [PMID: 30552952]
[23]
Smith, R.D.; Kehrer, J.P. Cooxidation of cyclophosphamide as an alternative pathway for its bioactivation and lung toxicity. Cancer Res., 1991, 51(2), 542-548.
[PMID: 1985772]
[24]
Abdel-Latif, G.A.; Elwahab, A.H.A.; Hasan, R.A.; ElMongy, N.F.; Ramzy, M.M.; Louka, M.L.; Schaalan, M.F. A novel protective role of sacubitril/valsartan in cyclophosphamide induced lung injury in rats: Impact of miRNA-150-3p on NF-κB/MAPK signaling trajectories. Sci. Rep., 2020, 10(1), 13045.
[http://dx.doi.org/10.1038/s41598-020-69810-5] [PMID: 32747644]
[25]
Habibi, E.; Shokrzadeh, M.; Ahmadi, A.; Chabra, A.; Naghshvar, F.; Haghi-Aminjan, H.; Salehi, F. Pulmonoprotective action of Zataria multiflora ethanolic extract on cyclophosphamide-induced oxidative lung toxicity in mice. Chin. J. Integr. Med., 2020, 26(10), 754-761.
[http://dx.doi.org/10.1007/s11655-018-2984-4] [PMID: 30242592]
[26]
Yan, J.; Wang, A.; Cao, J.; Chen, L. Apelin/APJ system: An emerging therapeutic target for respiratory diseases. Cell. Mol. Life Sci., 2020, 77(15), 2919-2930.
[http://dx.doi.org/10.1007/s00018-020-03461-7] [PMID: 32128601]
[27]
Salles, É.L.; Khodadadi, H.; Jarrahi, A.; Ahluwalia, M.; Paffaro, V.A., Jr; Costigliola, V.; Yu, J.C.; Hess, D.C.; Dhandapani, K.M.; Baban, B. Cannabidiol (CBD) modulation of apelin in acute respiratory distress syndrome. J. Cell. Mol. Med., 2020, 24(21), 12869-12872.
[http://dx.doi.org/10.1111/jcmm.15883] [PMID: 33058425]
[28]
He, Q.; Wang, Y.; Yang, H.; Wang, J.; Zhang, J.; Liu, D. Apelin 36 protects against lipopolysaccharide induced acute lung injury by inhibiting the ASK1/MAPK signaling pathway. Mol. Med. Rep., 2020, 23(1), 1-9.
[http://dx.doi.org/10.3892/mmr.2020.11644] [PMID: 33179090]
[29]
Hennigs, J.K.; Cao, A.; Li, C.G.; Shi, M.; Mienert, J.; Miyagawa, K.; Körbelin, J.; Marciano, D.P.; Chen, P.I.; Roughley, M.; Elliott, M.V.; Harper, R.L.; Bill, M.A.; Chappell, J.; Moonen, J.R.; Diebold, I.; Wang, L.; Snyder, M.P.; Rabinovitch, M. PPARγ-p53-mediated vasculoregenerative program to reverse pulmonary hypertension. Circ. Res., 2021, 128(3), 401-418.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316339] [PMID: 33322916]
[30]
Ohnishi, H.; Yokoyama, A.; Kondo, K.; Hamada, H.; Abe, M.; Nishimura, K.; Hiwada, K.; Kohno, N. Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am. J. Respir. Crit. Care Med., 2002, 165(3), 378-381.
[http://dx.doi.org/10.1164/ajrccm.165.3.2107134] [PMID: 11818324]
[31]
Hant, F.N.; Ludwicka-Bradley, A.; Wang, H.J.; Li, N.; Elashoff, R.; Tashkin, D.P.; Silver, R.M. Surfactant protein D and KL-6 as serum biomarkers of interstitial lung disease in patients with scleroderma. J. Rheumatol., 2009, 36(4), 773-780.
[http://dx.doi.org/10.3899/jrheum.080633] [PMID: 19286849]
[32]
Yamakawa, H.; Hagiwara, E.; Kitamura, H.; Yamanaka, Y.; Ikeda, S.; Sekine, A.; Baba, T.; Okudela, K.; Iwasawa, T.; Takemura, T.; Kuwano, K.; Ogura, T. Serum KL-6 and surfactant protein-D as monitoring and predictive markers of interstitial lung disease in patients with systemic sclerosis and mixed connective tissue disease. J. Thorac. Dis., 2017, 9(2), 362-371.
[http://dx.doi.org/10.21037/jtd.2017.02.48] [PMID: 28275485]
[33]
Elhai, M.; Hoffmann-Vold, A.M.; Avouac, J.; Pezet, S.; Cauvet, A.; Leblond, A.; Fretheim, H.; Garen, T.; Kuwana, M.; Molberg, Ø.; Allanore, Y. Performance of candidate serum biomarkers for systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol., 2019, 71(6), 972-982.
[http://dx.doi.org/10.1002/art.40815] [PMID: 30624031]
[34]
Alastalo, T.P.; Li, M.; de Jesus Perez, V.; Pham, D.; Sawada, H.; Wang, J.K.; Koskenvuo, M.; Wang, L.; Freeman, B.A.; Chang, H.Y.; Rabinovitch, M. Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J. Clin. Invest., 2011, 121(9), 3735-3746.
[http://dx.doi.org/10.1172/JCI43382] [PMID: 21821917]
[35]
Fan, X.F.; Xue, F.; Zhang, Y.Q.; Xing, X.P.; Liu, H.; Mao, S.Z.; Kong, X.X.; Gao, Y.Q.; Liu, S.F.; Gong, Y.S. The Apelin-APJ axis is an endogenous counterinjury mechanism in experimental acute lung injury. Chest, 2015, 147(4), 969-978.
[http://dx.doi.org/10.1378/chest.14-1426] [PMID: 25375801]
[36]
Xia, F.; Chen, H.; Jin, Z.; Fu, Z. Apelin-13 protects the lungs from ischemia-reperfusion injury by attenuating inflammatory and oxidative stress. Hum. Exp. Toxicol., 2021, 40(4), 685-694.
[http://dx.doi.org/10.1177/0960327120961436] [PMID: 33025833]
[37]
Keskin-Aktan, A.; Akbulut, K.G.; Abdi, S.; Akbulut, H. SIRT2 and FOXO3a expressions in the cerebral cortex and hippocampus of young and aged male rats: Antioxidant and anti-apoptotic effects of melatonin. Biologia Futura, 2022, 73(1), 71-85.
[http://dx.doi.org/10.1007/s42977-021-00102-3] [PMID: 34708398]
[38]
Casini, A.F.; Ferrali, M.; Pompella, A.; Maellaro, E.; Comporti, M. Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. Am. J. Pathol., 1986, 123(3), 520-531.
[PMID: 3717304]
[39]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[40]
Patel, J.M. Metabolism and pulmonary toxicity of cyclophosphamide. Pharmacol. Ther., 1990, 47(1), 137-146.
[http://dx.doi.org/10.1016/0163-7258(90)90049-8] [PMID: 2195554]
[41]
Nie, Z.; Zhang, L.; Chen, W.; Zhang, Y.; Wang, W.; Hua, R.; Zhang, T.; Zhao, C.; Gong, M.; Wu, H. The protective effects of resveratrol pretreatment in cyclophosphamide-induced rat ovarian injury: An vivo study. Gynecol. Endocrinol., 2021, 37(10), 914-919.
[http://dx.doi.org/10.1080/09513590.2021.1885643] [PMID: 33594937]
[42]
Elrashidy, R.A.; Hasan, R.A. Cilostazol preconditioning alleviates cyclophosphamide-induced cardiotoxicity in male rats: Mechanistic insights into SIRT1 signaling pathway. Life Sci., 2021, 266, 118822.
[http://dx.doi.org/10.1016/j.lfs.2020.118822] [PMID: 33275987]
[43]
Sumida, H.; Asano, Y.; Tamaki, Z.; Aozasa, N.; Taniguchi, T.; Toyama, T.; Takahashi, T.; Ichimura, Y.; Noda, S.; Akamata, K.; Saigusa, R.; Miyazaki, M.; Kuwano, Y.; Yanaba, K.; Yoshizaki, A.; Sato, S. Prediction of therapeutic response before and during i.v. cyclophosphamide pulse therapy for interstitial lung disease in systemic sclerosis: A longitudinal observational study. J. Dermatol., 2018, 45(12), 1425-1433.
[http://dx.doi.org/10.1111/1346-8138.14669] [PMID: 30289572]
[44]
Shirakashi, M.; Nakashima, R.; Tsuji, H.; Tanizawa, K.; Handa, T.; Hosono, Y.; Akizuki, S.; Murakami, K.; Hashimoto, M.; Yoshifuji, H.; Ohmura, K.; Mimori, T. Efficacy of plasma exchange in anti-MDA5-positive dermatomyositis with interstitial lung disease under combined immunosuppressive treatment. Rheumatology, 2020, 59(11), 3284-3292.
[http://dx.doi.org/10.1093/rheumatology/keaa123] [PMID: 32276271]
[45]
Almuntashiri, S.; James, C.; Wang, X.; Siddiqui, B.; Zhang, D. The potential of lung epithelium specific proteins as biomarkers for COVID-19-associated lung injury. Diagnostics, 2021, 11(9), 1643.
[http://dx.doi.org/10.3390/diagnostics11091643] [PMID: 34573984]
[46]
Principe, A.; Melgar-Lesmes, P.; Fernández-Varo, G.; del Arbol, L.R.; Ros, J.; Morales-Ruiz, M.; Bernardi, M.; Arroyo, V.; Jiménez, W. The hepatic apelin system: A new therapeutic target for liver disease. Hepatology, 2008, 48(4), 1193-1201.
[http://dx.doi.org/10.1002/hep.22467] [PMID: 18816630]
[47]
Kutlay, Ö.; Aktan, A.K.; Aslan, E. The protective effect of apelin-13 on cardiorenal toxicity induced by cyclophosphamide. Can. J. Physiol. Pharmacol., 2022, 100(4), 314-323.
[http://dx.doi.org/10.1139/cjpp-2021-0337] [PMID: 34665971]
[48]
Abbas, S.S.; Schaalan, M.F.; Gebril, S.M.; Hassan, F.E.; Mahmoud, M.O.; Hassanin, S.O. LCZ696 (sacubitril/valsartan) protects against cyclophosphamide-induced nephrotoxicity in adult male rats: Up-regulation of Apelin-13/ACE2, miR-200, and down-regulation of TGF-β/SMAD 2/3 and miR-192. Life Sci., 2022, 306(306), 120850.
[http://dx.doi.org/10.1016/j.lfs.2022.120850] [PMID: 35917938]
[49]
Fan, J.; Guang, H.; Zhang, H.; Chen, D.; Ding, L.; Fan, X.; Xue, F.; Gan, Z.; Wang, Y.; Mao, S.; Hu, L.; Gong, Y. SIRT1 mediates Apelin-13 in ameliorating chronic normobaric hypoxia-induced anxiety-like behavior by suppressing NF-κB pathway in mice hippocampus. Neuroscience, 2018, 381, 22-34.
[http://dx.doi.org/10.1016/j.neuroscience.2018.04.013] [PMID: 29680708]
[50]
Yuan, Y.; Wang, W.; Zhang, Y.; Hong, Q.; Huang, W.; Li, L.; Xie, Z.; Chen, Y.; Li, X.; Meng, Y. Apelin-13 attenuates lipopolysaccharide-induced inflammatory responses and acute lung injury by regulating pfkfb3-driven glycolysis induced by NOX4-dependent ROS. J. Inflamm. Res., 2022, 15, 2121-2139.
[http://dx.doi.org/10.2147/JIR.S348850] [PMID: 35386222]
[51]
Ye, C.; Zhang, N.; Zhao, Q.; Xie, X.; Li, X.; Zhu, H.P.; Peng, C.; Huang, W.; Han, B. Evodiamine alleviates lipopolysaccharide‐induced pulmonary inflammation and fibrosis by activating apelin pathway. Phytother. Res., 2021, 35(6), 3406-3417.
[http://dx.doi.org/10.1002/ptr.7062] [PMID: 33657655]
[52]
Zhang, H.; Gong, Y.; Wang, Z.; Jiang, L.; Chen, R.; Fan, X.; Zhu, H.; Han, L.; Li, X.; Xiao, J.; Kong, X. Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/m TOR signal and the inhibition of autophagy under hypoxia. J. Cell. Mol. Med., 2014, 18(3), 542-553.
[http://dx.doi.org/10.1111/jcmm.12208] [PMID: 24447518]
[53]
Mazumder, S.; Barman, M.; Bandyopadhyay, U.; Bindu, S. Sirtuins as endogenous regulators of lung fibrosis: A current perspective. Life Sci., 2020, 258, 118201.
[http://dx.doi.org/10.1016/j.lfs.2020.118201] [PMID: 32781070]
[54]
Xu, C.; Huang, X.; Tong, Y.; Feng, X.; Wang, Y.; Wang, C.; Jiang, Y. Icariin modulates the sirtuin/NF κB pathway and exerts anti aging effects in human lung fibroblasts. Mol. Med. Rep., 2020, 22(5), 3833-3839.
[http://dx.doi.org/10.3892/mmr.2020.11458] [PMID: 33000191]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy