Skip to main content
Log in

Evolution Properties of a Partially Coherent Laguerre Pulsed Vector Vortex Beam in a Turbulent Atmosphere with Anisotropy

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Based on the extended Huygens–Fresnel principle, we derive the analytical expression of the crossspectral density matrix of a partially coherent Laguerre pulsed vector vortex beam (PCLPVVB) propagating through isotropic and anisotropic atmospheric turbulence. Our outcomes reveal that the atmospheric turbulence affects the evolution of spectral intensity distribution of PCLPVVB, and the beam quickly degenerates on propagation in the strong turbulence. We also can find that PCLPVVB with a larger topological charge has a stronger ability to resist the degeneration caused by atmospheric turbulence in comparison with the non-vortex beam. In addition, increasing the initial coherence length and mode order can increase the anti-turbulence ability of PCLPVVB, and the pulse duration significantly affects the spectral intensity of PCLPVVB in turbulence. Our research results are important for some applications in laser radar detection, remote sensing, and free-space optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Zhao, G. Q. Wang, Y. Yin, et al., Optik, 241, 167237 (2021).

    Article  ADS  Google Scholar 

  2. Y. Xu, Y. G. Xu, S. J. Wang, et al., J. Russ. Laser Res., 43, 509 (2022).

    Article  Google Scholar 

  3. S. Rasouli, E. M. Razi, and J. J. Niemela, J. Opt. Soc. Am. A, 39, 1641 (2022).

    Article  ADS  Google Scholar 

  4. K. Huang, Y. G. Xu, J. Cao, et al., J. Russ. Laser Res., 44, 110 (2023).

    Article  Google Scholar 

  5. Q. Li, J. Mod. Opt., 68, 1221 (2021).

    Article  ADS  Google Scholar 

  6. X. Guo, C. Yang, M. L. Duan, et al., Optik, 243, 167361 (2021).

    Article  ADS  Google Scholar 

  7. Y. G. Xu, Y. Q. Dan, J. Y. Yu, et al., J. Mod. Opt., 64, 1976 (2017).

    Article  ADS  Google Scholar 

  8. Q. Xu, L. Zhao, and Y. G. Xu, Optik, 265, 169542 (2022).

    Article  ADS  Google Scholar 

  9. Y. Baykal, Y. Ata, and M. C. Gokce, Appl. Opt., 60, 2166 (2021).

    Article  ADS  Google Scholar 

  10. Q. C. Yang, T. S. Wang, J. D. Chen, et al., Opt. Commun., 496, 127078 (2021).

    Article  Google Scholar 

  11. L. Zhu, A. D. Wang, M. L. Deng, et al., Opt. Express, 29, 32580 (2021).

    Article  ADS  Google Scholar 

  12. J. L. Zhao, G. Q. Wang, X. L. Ma, et al., Photonics, 8, 5 (2021).

    Article  Google Scholar 

  13. Y.Wu, H. P. Mei, C. M. Dai, et al., Opt. Commun., 472, 126041 (2020).

    Article  Google Scholar 

  14. X. X. Zhou, Z. Y. Zhou, P. Tian, et al., Appl. Opt., 58, 9443 (2019).

    Article  ADS  Google Scholar 

  15. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, et al., Phys. Rev. A., 45, 8185 (1992).

    Article  ADS  Google Scholar 

  16. G. Gibson, J. Courtial, M. J. Padgett, et al., Opt. Express, 12, 5448 (2004).

    Article  ADS  Google Scholar 

  17. J. Wang, J. Y. Yang, I. M. Fazal, et al., Nat. Photonics, 6, 488 (2012).

    Article  ADS  Google Scholar 

  18. Y. Xu, L. Zhao, N. Yang, et al., J. Mod. Opt., 69, 200 (2022).

    Article  ADS  Google Scholar 

  19. M. T. Xie, J. Y. Wang, J. H. Li, et al., J. Mod. Opt., 69, 728 (2022).

    Article  ADS  Google Scholar 

  20. Y. Xu, Y. G. Xu, and T. J. Wang, Photonics, 9, 707 (2022).

    Article  Google Scholar 

  21. G. A. Swartzlander, Opt. Lett., 26, 497 (2001).

    Article  ADS  Google Scholar 

  22. B. Melo, I. Brandao, B. P. da Silva, et al., Phys. Rev. Appl., 14, 034069 (2020).

    Article  ADS  Google Scholar 

  23. M. Y. Luo, D. Q. Sun, Y. J. Yang, et al., Opt. Commun., 463, 125434 (2020).

    Article  Google Scholar 

  24. L. Zhao, Y. G. Xu, and S. K. Yang, Optik, 227, 166115 (2021).

    Article  ADS  Google Scholar 

  25. M. J. Cheng, L. X. Guo, and J. T. Li, J. Quant. Spectrosc. Radiat. Transf., 218, 12 (2018).

    Article  ADS  Google Scholar 

  26. X. F. Cai, P. Gu, and Z. X. Zhang, J. Russ. Laser Res., 43, 169 (2022).

    Article  Google Scholar 

  27. J. Wei, P. X. Jin, X. C. Cao, et al., Chin. Opt. Lett., 20, 041405 (2022).

    Article  ADS  Google Scholar 

  28. Y. K. Wang, K. W. Geng, T. Chen, et al., J. Russ. Laser Res., 43, 201 (2022).

    Article  Google Scholar 

  29. Y. Li, M. Gao, and B. Li, Opt. Commun., 518, 128385 (2022).

    Article  Google Scholar 

  30. K. L. Yong, J. W. Yan, S. M. Huang, et al., Optik, 180, 27 (2019).

    Article  ADS  Google Scholar 

  31. I. Toselli, J. Opt. Soc. Am. A., 31, 1868 (2014).

    Article  ADS  Google Scholar 

  32. Y. G. Xu, Y. D. Li, and X. L. Zhao, J. Opt. Soc. Am. A., 32, 1623 (2015).

    Article  ADS  Google Scholar 

  33. L. Zhao, Y. G. Xu, and Y. Q. Dan, Opt. Express, 29, 34986 (2021).

    Article  ADS  Google Scholar 

  34. Y. Q. Dan and B. Zhang, Opt. Express, 16, 15563 (2008).

    Article  ADS  Google Scholar 

  35. J.Wang, S. J. Zhu, H. Y. Wang, et al., Opt. Express, 24, 11626 (2016).

    Article  ADS  Google Scholar 

  36. M. J. Cheng, L. X. Guo, J. T. Li, et al., J. Opt. Soc. Am. A., 33, 1442 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggen Xu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, B., Xu, Y., Liu, W. et al. Evolution Properties of a Partially Coherent Laguerre Pulsed Vector Vortex Beam in a Turbulent Atmosphere with Anisotropy. J Russ Laser Res 44, 439–450 (2023). https://doi.org/10.1007/s10946-023-10151-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10151-9

Keywords

Navigation