Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 26, 2023

POD-ROMs for incompressible flows including snapshots of the temporal derivative of the full order solution: Error bounds for the pressure

  • Bosco García-Archilla , Volker John , Sarah Katz and Julia Novo

Abstract

Reduced order methods (ROMs) for the incompressible Navier–Stokes equations, based on proper orthogonal decomposition (POD), are studied that include snapshots which approach the temporal derivative of the velocity from a full order mixed finite element method (FOM). In addition, the set of snapshots contains the mean velocity of the FOM. Both the FOM and the POD-ROM are equipped with a grad-div stabilization. A velocity error analysis for this method can be found already in the literature. The present paper studies two different procedures to compute approximations to the pressure and proves error bounds for the pressure that are independent of inverse powers of the viscosity. Numerical studies support the analytic results and compare both methods.

JEL Classification: 65M12; 65M15; 65M60

Research is supported by Spanish MCINYU under grants PID2019-104141GB-I00

Research is supported by the Deutsche Forschungsgemeinschaft (DFG) within the RTG 2433 Differential Equation- and Data-driven Models in Life Sciences and Fluid Dynamics (DAEDALUS).

Research is supported by Spanish MINECO under grants PID2019-104141GB-I00 and VA169P20


References

[1] R. A. Adams. Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.Search in Google Scholar

[2] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza. Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Internat. J. Numer. Methods Engrg., 102(5):1136–1161, 2015.10.1002/nme.4772Search in Google Scholar

[3] D. Boffi. Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations. Math. Models Methods Appl. Sci., 4(2):223–235, 1994.10.1142/S0218202594000133Search in Google Scholar

[4] D. Boffi. Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal., 34(2):664–670, 1997.10.1137/S0036142994270193Search in Google Scholar

[5] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.10.1007/978-0-387-75934-0Search in Google Scholar

[6] F. Brezzi and R. S. Falk. Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal., 28(3):581–590, 1991.10.1137/0728032Search in Google Scholar

[7] A. Caiazzo, T. Iliescu, V. John, and S. Schyschlowa. A numerical investigation of velocity-pressure reduced order models for incompressible flows. J. Comput. Phys., 259:598–616, 2014.10.1016/j.jcp.2013.12.004Search in Google Scholar

[8] T. Chacón Rebollo, S. Rubino, M. Oulghelou, and C. Allery. Error analysis of a residual-based stabilization-motivated POD-ROM for incompressible flows. Comput. Methods Appl. Mech. Engrg., 401(part B):Paper No. 115627, 2022.10.1016/j.cma.2022.115627Search in Google Scholar

[9] P. G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam].Search in Google Scholar

[10] J. de Frutos, B. Garcı́a-Archilla, V. John, and J. Novo. Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements. Adv. Comput. Math., 44(1):195–225, 2018.10.1007/s10444-017-9540-1Search in Google Scholar

[11] J. de Frutos, B. Garcı́a-Archilla, and J. Novo. Corrigenda: Fully discrete approximations to the time-dependent Navier-Stokes equations with a projection method in time and grad-div stabilization. J. Sci. Comput., 88(2):Paper No. 40, 3, 2021.10.1007/s10915-021-01551-7Search in Google Scholar

[12] B. Garcı́a-Archilla, V. John, and J. Novo. Symmetric pressure stabilization for equal-order finite element approximations to the time-dependent Navier-Stokes equations. IMA J. Numer. Anal., 41(2):1093–1129, 2021.10.1093/imanum/draa037Search in Google Scholar

[13] B. Garcı́a-Archilla, V. John, and J. Novo. POD-ROMs for incompressible flows including snapshots of the temporal derivative of the full order solution. SIAM J. Numer. Anal., 61(3):1340–1368, 2023.10.1137/22M1503853Search in Google Scholar

[14] B. Garcı́a-Archilla, J. Novo, and S. Rubino. Error analysis of proper orthogonal decomposition data assimilation schemes with grad-div stabilization for the Navier-Stokes equations. J. Comput. Appl. Math., 411:Paper No. 114246, 30, 2022.10.1016/j.cam.2022.114246Search in Google Scholar

[15] S. Ingimarson, L. G. Rebholz, and T. Iliescu. Full and reduced order model consistency of the nonlinearity discretization in incompressible flows. Com-put. Methods Appl. Mech. Engrg., 401(part B):Paper No. 115620, 16, 2022.10.1016/j.cma.2022.115620Search in Google Scholar

[16] V. John. Finite element methods for incompressible flow problems, volume 51 of Springer Series in Computational Mathematics. Springer, Cham, 2016.10.1007/978-3-319-45750-5Search in Google Scholar

[17] V. John, B. Moreau, and J. Novo. Error analysis of a SUPG-stabilized POD-ROM method for convection-diffusion-reaction equations. Comput. Math. Appl., 122:48–60, 2022.10.1016/j.camwa.2022.07.017Search in Google Scholar

[18] K. Kean and M. Schneier. Error analysis of supremizer pressure recovery for POD based reduced-order models of the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 58(4):2235–2264, 2020.Search in Google Scholar

[19] K. Kean and M. Schneier. Error analysis of supremizer pressure recovery for POD based reduced-order models of the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 58(4):2235–2264, 2020.10.1137/19M128702XSearch in Google Scholar

[20] B. Koc, S. Rubino, M. Schneier, J. Singler, and T. Iliescu. On optimal pointwise in time error bounds and difference quotients for the proper orthogonal decomposition. SIAM J. Numer. Anal., 59(4):2163–2196, 2021.10.1137/20M1371798Search in Google Scholar

[21] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math., 90(1):117–148, 2001.10.1007/s002110100282Search in Google Scholar

[22] S. Locke and J. Singler. New proper orthogonal decomposition approximation theory for PDE solution data. SIAM J. Numer. Anal., 58(6):3251–3285, 2020.10.1137/19M1297002Search in Google Scholar

[23] J. Novo and S. Rubino. Error analysis of proper orthogonal decomposition stabilized methods for incompressible flows. SIAM J. Numer. Anal., 59(1):334–369, 2021.10.1137/20M1341866Search in Google Scholar

[24] S. Rubino. Numerical analysis of a projection-based stabilized POD-ROM for incompressible flows. SIAM J. Numer. Anal., 58(4):2019–2058, 2020.10.1137/19M1276686Search in Google Scholar

[25] M. Schäfer and S. Turek. Benchmark computations of laminar flow around a cylinder. (With support by F. Durst, E. Krause and R. Rannacher). In Flow simulation with high-performance computers II. DFG priority research programme results 1993 - 1995, pages 547–566. Wiesbaden: Vieweg, 1996.10.1007/978-3-322-89849-4_39Search in Google Scholar

[26] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using the finite element technique. Internat. J. Comput. & Fluids, 1(1):73–100, 1973.10.1016/0045-7930(73)90027-3Search in Google Scholar

[27] U. Wilbrandt, C. Bartsch, N. Ahmed, N. Alia, F. Anker, L. Blank, A. Caiazzo, S. Ganesan, S. Giere, G. Matthies, R. Meesala, A. Shamim, J. Venkatesan, and V. John. ParMooN—A modernized program package based on mapped finite elements. Comput. Math. Appl., 74(1):74–88, 2017.10.1016/j.camwa.2016.12.020Search in Google Scholar

Published Online: 2023-08-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2023-0039/html
Scroll to top button