Skip to main content
Log in

Molecular Modeling and Optimization of Type II E.coli l-Asparginase Activity by in silico Design and in vitro Site-directed Mutagenesis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Introduction

L-asparaginase (also known as L-ASNase) is a crucial therapeutic enzyme that is widely used in treatment of ALL (acute lymphoblastic leukemia) as a chemotherapeutic drug. Besides, this enzyme is used in the food industry as a food processing reagent to reduce the content of acrylamide in addition to the clinical industry. The improvement of activity and kinetic parameters of the L-ASNase enzyme may lead to higher efficiency resulting in practical achievement. In order to achieve this goal, we chosen glycine residue in position 88 as a potential mutation with advantageous outcomes.

Method

In this study, firstly to find the appropriate mutation on glycine 88, various in silico analyses, such as MD simulation and molecular docking, were carried out. Then, the rational design was adopted as the best strategy for molecular modifications of the enzyme to improve its enzymatic properties.

Result

Our in silico findings show that the four mutations G88Q, G88L, G88K, and G88A may be able to increase L-ASNase’s asparaginase activity. The catalytic efficiency of each enzyme (kcat/Km) is the most important feature for comparing the catalytic activity of the mutants with the wild type form. The laboratory experiments showed that the kcat/Km for the G88Q mutant is 36.32% higher than the Escherichia coli K12 ASNase II (wild type), which suggests that L-ASNase activity is improved at lower concentration of L-ASN. Kinetic characterization of the mutants L-ASNase activity confirmed the high turnover rate (kcat) with ASN as substrate relative to the wild type enzyme.

Conclusion

In silico analyses and laboratory experiments demonstrated that the G88Q mutation rather than other mutation (G88L, G88K, and G88A) could improve the kinetics of L-ASNase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Maggi M, Scotti C (2022) Structural aspects of E. coli type II asparaginase in Complex with its secondary product L-Glutamate. Int J Mol Sci 23(11):5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Xu W, Wu H, Zhang W, Guang C, Mu W (2021) Microbial production, molecular modification, and practical application of L-asparaginase: a review. Int J Biol Macromol 186:975–983

    Article  CAS  PubMed  Google Scholar 

  3. Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B et al (2022) Novel insights on the Use of L-Asparaginase as an efficient and safe anti-cancer therapy. Cancers 14(4):902

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang N, Ji W, Wang L, Wu W, Zhang W, Wu Q et al (2022) Overview of the structure, side effects, and activity assays of l-asparaginase as a therapy drug of acute lymphoblastic leukemia. RSC Med Chem.

  5. Avramis VI, Tiwari PN (2006) Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed 1(3):241

    CAS  Google Scholar 

  6. Mohan Kumar N, Shimray CA, Indrani D, Manonmani H (2014) Reduction of acrylamide formation in sweet bread with L-asparaginase treatment. Food Bioprocess Technol 7(3):741–748

    Article  CAS  Google Scholar 

  7. Kukurová K, Morales FJ, Bednarikova A, Ciesarova Z (2009) Effect of l-asparaginase on acrylamide mitigation in a fried‐dough pastry model. Mol Nutr Food Res 53(12):1532–1539

    Article  PubMed  Google Scholar 

  8. Huang L, Liu Y, Sun Y, Yan Q, Jiang Z (2014) Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl Environ Microbiol 80(5):1561–1569

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mahboobi M, Sedighian H, Hedayati C, Bambai B, Soofian SE, Amani J (2017) Applying bioinformatic tools for modeling and modifying type II E. coli L-Asparginase to present a better therapeutic agent/drug for acute lymphoblastic leukemia. Iran J Cancer Prev 10(3):10

    Google Scholar 

  10. Keshtvarz M, Mahboobi M, Kieliszek M, Miecznikowski A, Sedighian H, Rezaei M et al (2021) Engineering of cytolethal distending toxin B by its reducing immunogenicity and maintaining stability as a new drug candidate for tumor therapy; an in silico study. Toxins 13(11):785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galande S, Khaursade P, Prakasham RS, Kishor PK, IN-SILICO DEVELOPMENT, OF EFFICIENT L-ASPARAGINASE ENZYME FOR ACUTE LYMPHOBLASTIC LEUKAEMIA THERAPY. INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH (2018). ;9(10):4177–4186

  12. Xia Y, Chu W, Qi Q, Xun L (2015) New insights into the QuikChangeTM process guide the use of Phusion DNA polymerase for site-directed mutagenesis. Nucleic Acids Res 43(2):e12–e

    Article  PubMed  Google Scholar 

  13. Xia Y, Xun L (2017) Revised mechanism and improved efficiency of the quikchange site-directed mutagenesis method. In Vitro Mutagenesis. Springer; p. 367 – 74

  14. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sambrook J (2001) A laboratory manual. Molecular cloning. ;1

  16. Froimowitz M (1993) HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques 14(6):1010–1013

    CAS  PubMed  Google Scholar 

  17. Swain AL, Jaskólski M, Housset D, Rao J, Wlodawer A (1993) Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proceedings of the National Academy of Sciences. ;90(4):1474-8

  18. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI et al (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30(1):70–82

    Article  CAS  PubMed  Google Scholar 

  19. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des selection 8(2):127–134

    Article  CAS  Google Scholar 

  21. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen My et al (2006) Comparative protein structure modeling using Modeller. Curr protocols Bioinf 15(1):561–5630

    Article  Google Scholar 

  22. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65(3):712–725

    Article  CAS  Google Scholar 

  23. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  CAS  PubMed  Google Scholar 

  24. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  25. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  26. An Y, Chen L, Sun S, Lv A, Wu W (2011) QuikChange shuffling: a convenient and robust method for site-directed mutagenesis and random recombination of homologous genes. New Biotechnol 28(4):320–325

    Article  CAS  Google Scholar 

  27. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421

    Article  CAS  PubMed  Google Scholar 

  28. Naderi M, Ghaderi R, Khezri J, Bambai AKB (2022) Crucial role of non-hydrophobic residues in H-region signal peptide on secretory production of l-asparaginase II in Escherichia coli. Biochemical and Biophysical Research Communications

  29. Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA (2016) Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531(7594):395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  31. Shifrin S, Parrott CL, Luborsky SW (1974) Substrate binding and intersubunit interactions in L-asparaginase. J Biol Chem 249(5):1335–1340

    Article  CAS  PubMed  Google Scholar 

  32. Aghaeepoor M, Akbarzadeh A, Mirzaie S, Hadian A, Aval SJ, Dehnavi E (2018) Selective reduction in glutaminase activity of l–Asparaginase by asparagine 248 to serine mutation: a combined computational and experimental effort in blood cancer treatment. Int J Biol Macromol 120:2448–2457

    Article  CAS  PubMed  Google Scholar 

  33. Vimal A, Kumar A (2017) Biotechnological production and practical application of L-asparaginase enzyme. Biotechnol Genet Eng Rev 33(1):40–61

    Article  CAS  PubMed  Google Scholar 

  34. Mohan Kumar N, Manonmani H (2013) Purification, characterization and kinetic properties of extracellular L-asparaginase produced by Cladosporium sp. World J Microbiol Biotechnol 29(4):577–587

    Article  CAS  PubMed  Google Scholar 

  35. Lu X, Chen J, Jiao L, Zhong L, Lu Z, Zhang C et al (2019) Improvement of the activity of L-asparaginase I improvement of the catalytic activity of L-asparaginase I from Bacillus megaterium H-1 by in vitro directed evolution. J Biosci Bioeng 128(6):683–689

    Article  PubMed  Google Scholar 

  36. Parvin S, Sedighian H, Sohrabi E, Mahboobi M, Rezaei M, Ghasemi D et al (2022) Prediction of genes involved in lung cancer with a systems biology approach based on comprehensive gene information. Biochem Genet 60(4):1253–1273

    Article  CAS  PubMed  Google Scholar 

  37. Shabgah AG, Navashenaq JG, Mahboobi M, Sedighian H (2014) Immunotherapy as an optimal manner in cancer treatment. Biosci Biotechnol Res Asia 11(3):1167–1178

    Article  Google Scholar 

  38. Harms E, Wehner A, Aung H-P, Röhm K (1991) A catalytic role for threonine-12 of E. coli asparaginase II as established by site‐directed mutagenesis. FEBS Lett 285(1):55–58

    Article  CAS  PubMed  Google Scholar 

  39. Derst C, Henseling J, Röhm K (1992) Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis. Protein Eng Des Selection 5(8):785–789

    Article  CAS  Google Scholar 

  40. Derst C, Henseling J, Röhm K-H (2000) Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci 9(10):2009–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mehta RK, Verma S, Pati R, Sengupta M, Khatua B, Jena RK et al (2014) Mutations in subunit interface and B-cell epitopes improve antileukemic activities of Escherichia coli asparaginase-II: evaluation of immunogenicity in mice. J Biol Chem 289(6):3555–3570

    Article  CAS  PubMed  Google Scholar 

  42. Verma S, Mehta RK, Maiti P, Röhm K-H, Sonawane A (2014) Improvement of stability and enzymatic activity by site-directed mutagenesis of E. coli asparaginase II. Biochimica et Biophysica Acta (BBA)-Proteins and proteomics. ;1844(7):1219–1230

  43. Belén LH, Lissabet JB, de Oliveira Rangel-Yagui C, Effer B, Monteiro G, Pessoa A et al (2019) A structural in silico analysis of the immunogenicity of l-asparaginase from Escherichia coli and Erwinia carotovora. Biologicals 59:47–55

    Article  PubMed  Google Scholar 

  44. Kleiner-Grote GR, Risse JM, Friehs K (2018) Secretion of recombinant proteins from E. coli. Eng Life Sci 18(8):532–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoon SH, Kim SK, Kim JF (2010) Secretory production of recombinant proteins in Escherichia coli. Recent Patents Biotechnol 4(1):23–29

    Article  CAS  Google Scholar 

  46. Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y (2018) A comprehensive review of signal peptides: structure, roles, and applications. Eur J Cell Biol 97(6):422–441

    Article  CAS  PubMed  Google Scholar 

  47. Erkut E (2021) Bacterial signal peptides: structure, optimization, and applications. Eureka. ;6(1)

  48. Tsirigotaki A, De Geyter J, Economou A, Karamanou S (2017) Protein export through the bacterial sec pathway. Nat Rev Microbiol 15(1):21–36

    Article  CAS  PubMed  Google Scholar 

  49. Freudl R (2018) Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Fact 17(1):1–10

    Article  Google Scholar 

  50. Nguyen HA, Su Y, Lavie A (2016) Design and characterization of erwinia chrysanthemi l-asparaginase variants with diminished l-glutaminase activity. J Biol Chem 291(34):17664–17676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues from “NIGEB and Applied Microbiology Research Center” who provided insight and expertise that greatly assisted our research.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MM Conceptualization, Methodology, Validation, formal analysis, Investigation, wrote the manuscript draft, Visualization. AHS and BB, Conceptualization, Writing review & editing and supervision. MM and HS revized the manuscript and bioinformatic analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ali-Hatef Salmanian or Bijan Bambai.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahboobi, M., Salmanian, AH., Sedighian, H. et al. Molecular Modeling and Optimization of Type II E.coli l-Asparginase Activity by in silico Design and in vitro Site-directed Mutagenesis. Protein J 42, 664–674 (2023). https://doi.org/10.1007/s10930-023-10149-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10149-x

Keywords

Navigation