Skip to main content

Advertisement

Log in

Staphylococcus aureus Bacteriophage 52 Endolysin Exhibits Anti-Biofilm and Broad Antibacterial Activity Against Gram-Positive Bacteria

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Bacteriophage endolysins have been shown to hold great promise as new antibacterial agents for animal and human health in food preservation. In the present study, endolysin from Staphylococcus aureus subsp. aureus ATCC 27692-B1 bacteriophage 52 (LysSA52) was cloned, expressed, and characterized for its antimicrobial properties. Following DNA extraction from bacteriophage 52, a 1446-bp DNA fragment containing the endolysin gene (lysSA52) was obtained by PCR amplification and cloned into pET SUMO expression vector. The positive clone was validated by sequencing and open-reading frame analysis. The LysSA52 sequence shared high homology with staphylococcal phage endolysins of the SA12, SA13, and DSW2 phages and others. The cloned lysSA52 gene encoding 481 amino acids endolysin was expressed in Escherichia coli BL21 with a calculated molecular mass of 66 kDa (LysSA52). This recombinant endolysin LysSA52 exhibited lytic activity against 8 of 10 Gram-positive bacteria via agar spot-on lawn antimicrobial assay, including methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Streptococcus pneumonia, Streptococcus pyogenes, Enterococcus faecium, Enterococcus faecalis, and Bacillus atrophaeus. In addition, the 0.50 mg/mL, LysSA52 endolysins reduced about 60% of the biofilms of S. aureus and S. epidermidis established on a microtiter plate in 12 h treatment. The data from this study indicate that LysSA52 endolysin could be used as an antibacterial protein to prevent and treat infections caused by staphylococci and several other Gram-positive pathogenic bacteria irrespective of their antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kloos WE, Bannerman TL (1994) Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 7:117–140. https://doi.org/10.1128/CMR.7.1.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song X, Perencevich E, Campos J, Short BL, Singh N (2010) Clinical and economic impact of methicillin-resistant Staphylococcus aureus colonization or infection on neonates in intensive care units. Infect Control Hosp Epidemiol 31:177–182. https://doi.org/10.1086/649797

    Article  PubMed  Google Scholar 

  3. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R (2012) Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 13:699–722. https://doi.org/10.2174/138920312804871193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86. https://doi.org/10.2174/138920110790725401

    Article  CAS  PubMed  Google Scholar 

  6. Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29:995–1003. https://doi.org/10.1007/s10529-007-9346-1

    Article  CAS  PubMed  Google Scholar 

  7. Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47. https://doi.org/10.2174/138920110790725410

    Article  CAS  PubMed  Google Scholar 

  8. Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Int J Med Microbiol 296:5–14. https://doi.org/10.1016/j.ijmm.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4

    Article  CAS  PubMed  Google Scholar 

  10. O’Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP (2005) The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 187:7161–7164. https://doi.org/10.1128/JB.187.20.7161-7164.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmelcher M, Donovan DM, Loessner MJ (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171. https://doi.org/10.2217/fmb.12.97

    Article  CAS  PubMed  Google Scholar 

  12. Loessner MJ (2005) Bacteriophage endolysins–current state of research and applications. Curr Opin Microbiol 8:480–487. https://doi.org/10.1016/j.mib.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  13. Fenton M, Ross P, McAuliffe O, O’Mahony J, Coffey A (2010) Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 1:9–16. https://doi.org/10.4161/bbug.1.1.9818

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rashel M, Uchiyama J, Ujihara T, Uehara Y, Kuramoto S, Sugihara S, Yagyu K, Muraoka A, Sugai M, Hiramatsu K, Honke K, Matsuzaki S (2007) Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis 196:1237–1247. https://doi.org/10.1086/521305

    Article  CAS  PubMed  Google Scholar 

  15. Djurkovic S, Loeffler JM, Fischetti VA (2005) Synergistic killing of Streptococcus pneumoniae with the bacteriophage lytic enzyme Cpl-1 and penicillin or gentamicin depends on the level of penicillin resistance. Antimicrob Agents Chemother 49:1225–1228. https://doi.org/10.1128/AAC.49.3.1225-1228.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schuch R, Lee HM, Schneider BC, Sauve KL, Law C, Khan BK, Rotolo JA, Horiuchi Y, Couto DE, Raz A, Fischetti VA, Huang DB, Nowinski RC, Wittekind M (2014) Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis 209:1469–1478. https://doi.org/10.1093/infdis/jit637

    Article  CAS  PubMed  Google Scholar 

  17. Schmelcher M, Powell AM, Camp MJ, Pohl CS, Donovan DM (2015) Synergistic streptococcal phage lambdaSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis. Appl Microbiol Biotechnol 99:8475–8486. https://doi.org/10.1007/s00253-015-6579-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jun SY, Jang IJ, Yoon S, Jang K, Yu K-S, Cho JY, Seong M-W, Jung GM, Yoon SJ, Kang SH (2017) Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob Agents Chemother 61:02629–02616. https://doi.org/10.1128/AAC.02629-16

    Article  Google Scholar 

  19. Totte JEE, van Doorn MB, Pasmans S (2017) Successful treatment of chronic Staphylococcus aureus-related dermatoses with the Topical Endolysin Staphefekt SA.100: a report of 3 cases. Case Rep Dermatol 9:19–25. https://doi.org/10.1159/000473872

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger JG, Fischetti VA (2011) A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother 55:738–744. https://doi.org/10.1128/AAC.00890-10

    Article  CAS  PubMed  Google Scholar 

  21. Lu Y, Wang Y, Wang J, Zhao Y, Zhong Q, Li G, Fu Z, Lu S (2021) Phage endolysin LysP108 showed Promising Antibacterial potential against Methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol 11:668430. https://doi.org/10.3389/fcimb.2021.668430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuiper JWP, Hogervorst JMA, Herpers BL, Bakker AD, Klein-Nulend J, Nolte PA, Krom BP (2021) The novel endolysin XZ.700 effectively treats MRSA biofilms in two biofilm models without showing toxicity on human bone cells in vitro. Biofouling 37:184–193. https://doi.org/10.1080/08927014.2021.1887151

    Article  CAS  PubMed  Google Scholar 

  23. Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S (2021) Endolysin, a Promising solution against Antimicrobial Resistance. Antibiot (Basel) 10:1277. https://doi.org/10.3390/antibiotics10111277

    Article  CAS  Google Scholar 

  24. Carroll-Portillo A, Coffman CN, Varga MG, Alcock J, Singh SB, Lin HC (2021) Standard bacteriophage purification procedures cause loss in numbers and activity. Viruses 13:328. https://doi.org/10.3390/v13020328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gondil VS, Harjai K, Chhibber S (2020) Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents 55:105844. https://doi.org/10.1016/j.ijantimicag.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  26. Gutierrez D, Ruas-Madiedo P, Martinez B, Rodriguez A, Garcia P (2014) Effective removal of staphylococcal biofilms by the endolysin LysH5. PLoS ONE 9:e107307. https://doi.org/10.1371/journal.pone.0107307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gutierrez D, Fernandez L, Rodriguez A, Garcia P (2018) Kill Staphylococcus aureus? mBio 9. https://doi.org/10.1128/mBio.01923-17. Are Phage Lytic Proteins the Secret Weapon To10.1128/mbio. 01923 – 01917

  28. Denis O, Nonhoff C, Dowzicky MJ (2014) Antimicrobial susceptibility among Gram-positive and Gram-negative isolates collected in Europe between 2004 and 2010. J Glob Antimicrob Resist 2:155–161. https://doi.org/10.1016/j.jgar.2014.05.001

    Article  PubMed  Google Scholar 

  29. Polaska M, Sokolowska B (2019) Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiol 5:324–346. https://doi.org/10.3934/microbiol.2019.4.324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dams D, Briers Y (2019) Enzybiotics: enzyme-based antibacterials as therapeutics. Adv Exp Med Biol 1148:233–253. https://doi.org/10.1007/978-981-13-7709-9_11

    Article  CAS  PubMed  Google Scholar 

  31. Mirski T, Lidia M, Nakonieczna A, Gryko R (2019) Bacteriophages, phage endolysins and antimicrobial peptides - the possibilities for their common use to combat infections and in the design of new drugs. Ann Agric Environ Med 26:203–209. https://doi.org/10.26444/aaem/105390

    Article  CAS  PubMed  Google Scholar 

  32. Lai MJ, Lin NT, Hu A, Soo PC, Chen LK, Chen LH, Chang KC (2011) Antibacterial activity of Acinetobacter baumannii phage varphiAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Appl Microbiol Biotechnol 90:529–539. https://doi.org/10.1007/s00253-011-3104-y

    Article  CAS  PubMed  Google Scholar 

  33. Park J, Yun J, Lim JA, Kang DH, Ryu S (2012) Characterization of an endolysin, LysBPS13, from a Bacillus cereus bacteriophage. FEMS Microbiol Lett 332:76–83. https://doi.org/10.1111/j.1574-6968.2012.02578.x

    Article  CAS  PubMed  Google Scholar 

  34. Gilmer DB, Schmitz JE, Euler CW, Fischetti VA (2013) Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:2743–2750. https://doi.org/10.1128/AAC.02526-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong H, Zhu C, Chen J, Ye X, Huang YP (2015) Antibacterial activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria. Front Microbiol 6:1299. https://doi.org/10.3389/fmicb.2015.01299

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang F, Ji X, Li Q, Zhang G, Peng J, Hai J, Zhang Y, Ci B, Li H, Xiong Y, Deng X, Lin L (2020) TSPphg Lysin from the Extremophilic Thermus Bacteriophage TSP4 as a potential Antimicrobial Agent against both gram-negative and gram-positive pathogenic Bacteria. Viruses 12:192. https://doi.org/10.3390/v12020192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Becker SC, Foster-Frey J, Donovan DM (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287:185–191. https://doi.org/10.1111/j.1574-6968.2008.01308.x

    Article  CAS  PubMed  Google Scholar 

  38. Loeffler JM, Djurkovic S, Fischetti VA (2003) Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 71:6199–6204. https://doi.org/10.1128/IAI.71.11.6199-6204.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14:18488–18501. https://doi.org/10.3390/ijms140918488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Project Unit at Karadeniz Technical University with Grant No.TDK-2015-5340, Türkiye.

Author information

Authors and Affiliations

Authors

Contributions

MAA performed the clooning experiments, ID performed the phage experiments, TD made bioinformatic analysis, SP performed the expression experiments, EK wrote the manuscript and performed expression and purification of the protein, AOK wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ali Osman Kiliç.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdurahman, M.A., Durukan, İ., Dinçer, T. et al. Staphylococcus aureus Bacteriophage 52 Endolysin Exhibits Anti-Biofilm and Broad Antibacterial Activity Against Gram-Positive Bacteria. Protein J 42, 596–606 (2023). https://doi.org/10.1007/s10930-023-10145-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10145-1

Keywords

Navigation