Skip to main content
Log in

Pharmacotherapy for Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Childhood Cancer Survivors

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

The number of childhood cancer survivors is increasing rapidly. According to American Association for Cancer Research, there are more than 750,000 childhood cancer survivors in the United States and Europe. As the number of childhood cancer survivors increases, so does cancer treatment-related cardiac dysfunction (CTRCD), leading to heart failure (HF). It has been reported that childhood cancer survivors who received anthracyclines are 15 times more likely to have late cancer treatment-related HF and have a 5-fold higher risk of death from cardiovascular (CV) disease than the general population. CV disease is the leading cause of death in childhood cancer survivors. The increasing need to manage cancer survivor patients has led to the rapid creation and adaptation of cardio-oncology. Cardio-oncology is a multidisciplinary science that monitors, treats, and prevents CTRCD. Many guidelines and position statements have been published to help diagnose and manage CTRCD, including those from the American Society of Clinical Oncology, the European Society of Cardiology, the Canadian Cardiovascular Society, the European Society of Medical Oncology, the International Late Effects of Childhood Cancer Guideline Harmonization Group, and many others. However, there remains a gap in identifying high-risk patients likely to develop cardiomyopathy and HF in later life, thus reducing primary and secondary measures being instituted, and when to start treatment when there is echocardiographic evidence of left ventricular (LV) dysfunctions without symptoms of HF. There are no randomized controlled clinical trials for treatment for CTRCD leading to HF in childhood cancer survivors. The treatment of HF due to cancer treatment is similar to the guidelines for general HF. This review describes the latest pharmacologic therapy for preventing and treating LV dysfunction and HF in childhood cancer survivors based on expert consensus guidelines and extrapolating data from adult HF trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wallace KB, Sardao VA, Oliveira PJ. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ Res. 2020;126(7):926–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kitakata H, Endo J, Ikura H, et al. Therapeutic targets for DOX-induced cardiomyopathy: role of apoptosis vs. ferroptosis. Int J Mol Sci. 2022;23(3):1414. https://doi.org/10.3390/ijms23031414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kamphius JAM, Linschoten M, Cramer M, et al. Cancer therapy-related cardiac dysfunction of nonanthracycline chemotherapeutics: what is the evidence? JACC CardioOncol. 2019;1(2):280–90.

    Article  Google Scholar 

  4. Zhang X, Zhu Y, Dong S, et al. Role of oxidative stress in cardiotoxicity of antineoplastic drugs. Life Sci. 2019;232: 116526. https://doi.org/10.1016/j.lfs.2019.06.001.

    Article  CAS  PubMed  Google Scholar 

  5. Rhea IB, Oliveira GH. Cardiotoxicity of novel targeted chemotherapeutic agents. Curr Treat Options Cardiovasc Med. 2018;20(7):53.

    Article  PubMed  Google Scholar 

  6. Mitchell JD, Cehic DA, Morgia M, et al. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the international cardio-oncology society. JACC Cardio Oncol. 2021;3:360–80.

    Article  Google Scholar 

  7. Bansal N, Blanco JG, Sharma U, Pokharel S, Shisler S, Lipshultz SE. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastases Rev. 2020;39(1):55–68.

    Article  Google Scholar 

  8. de Baat EC, van Dalen EC, Mulder RL, et al. Primary cardioprotection with Dexrazoxane in patients with childhood cancer who are expected to receive anthracyclines: recommendations from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Child Adolesc Health. 2022;6(12):885–94.

    Article  PubMed  Google Scholar 

  9. Feijen EAM, Font-Gonzalez A, Van der Pal HJH, et al. Risk and temporal changes of heart failure among 5-year childhood cancer survivors: a DCOG-LATER study. JAHA. 2019;8:e009122.

    Article  PubMed  Google Scholar 

  10. de Baat EC, Feijen EAM, Reulen RC, et al. risk factors for heart failure among Pan-European childhood cancer survivors: a PanCareSurFup and ProCardio cohort and nested case–control study. J Clin Oncol. 2023;41(1):96–106.

    Article  PubMed  Google Scholar 

  11. Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol. 2012;8(4):647–70.

    Article  CAS  PubMed  Google Scholar 

  12. Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31:3673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail. 2020;22(11):1945–60.

    Article  PubMed  Google Scholar 

  14. Srivastava R, Batra A, Dhawan D, Bakhshi S. Association of energy intake and expenditure with obesity: a cross-sectional study of 150 pediatric patients following treatment for leukemia. Pediatr Hematol Oncol. 2017;34:29–35.

    Article  PubMed  Google Scholar 

  15. Iughetti L, Bruzzi P, Predieri B, Paolucci P. Obesity in patients with acute lymphoblastic leukemia in childhood. Ital J Pediatr. 2012;38:4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Acar Z, Kale A, Turgut M, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll of Cardiol. 2011;58(9):988–9.

    Article  Google Scholar 

  17. Chotenimitkhun R, D’Agostino R Jr, Lawrence JA, et al. Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can J Cardiol. 2015;31(3):302–7.

    Article  PubMed  Google Scholar 

  18. Hundley WG, D’Agostino R, Crots T. Statins and left ventricular ejection fraction following doxorubicin treatment. NEJM Evid. 2022;1(9):EVIDoa2200097.

    Article  Google Scholar 

  19. Nelian TG et al. STOP-CA clinical trial finds statins lower rate of heart decline in lymphoma patients, Late Breaking ACC23 Clinical Trial Reports. ACC.23/WCC Meeting Newspaper. Published on March 4, 2023, in JACC.

  20. Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer. 2018;1869(2):189–99.

    Article  CAS  PubMed  Google Scholar 

  21. Smarz K, Jaxa-Chamiec T, Chwyczko T, et al. Cardiopulmonary exercise testing in adult cardiology: expert opinion of the Working Group of Cardiac Rehabilitation and Exercise Physiology of the Polish Cardiac Society. Kardiol Pol. 2019;77:730–56.

    Article  PubMed  Google Scholar 

  22. Toko H, Oka T, Zou Y, et al. Angiotensin II type 1a receptor mediates doxorubicin-induced cardiomyopathy. Hypertens Res. 2002;25:597–603.

    Article  CAS  PubMed  Google Scholar 

  23. Bien S, Riad A, Ritter CA, et al. The endothelin receptor blocker bosentan inhibits doxorubicin-induced cardiomyopathy. Cancer Res. 2007;67:10428–35.

    Article  CAS  PubMed  Google Scholar 

  24. Bernstein D, Fajardo G, Zhao M, et al. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol. 2005;289:H2441–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lódi M, Priksz D, Fülöp GÁ, et al. Advantages of prophylactic versus conventionally scheduled heart failure therapy in an experimental model of doxorubicin-induced cardiomyopathy. J Transl Med. 2019;17(1):229. https://doi.org/10.1186/s12967-019-1978-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bosch X, Rovira M, Sitges M, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (Prevention of left ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive chemotherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61:2355–62.

    Article  CAS  PubMed  Google Scholar 

  27. Pituskin E, Mackey JR, Koshman S, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101–breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2016;35:870–7.

    Article  PubMed  Google Scholar 

  28. Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of Candesartan and Metoprolol. Eur Heart J. 2016;37:1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  CAS  PubMed  Google Scholar 

  30. Jhorawat R, Kumari S, Varma SC, et al. Preventive role of carvedilol in adriamycin-induced cardiomyopathy. Indian J Med Res. 2016;144(5):725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nabati M, Janbabai G, Baghyari S, Esmaili K, Yazdani J. Cardioprotective effects of carvedilol in inhibiting doxorubicin-induced cardiotoxicity. J Cardiovasc Pharmacol. 2017;69(5):279–85.

    Article  CAS  PubMed  Google Scholar 

  32. Salehi R, Zamani B, Esfehani A, Ghafari S, Abasnezhad M, Goldust M. Protective effect of carvedilol in cardiomyopathy caused by anthracyclines in patients suffering from breast cancer and lymphoma. Am Heart Hosp J. 2011;9(2):95–8.

    Article  PubMed  Google Scholar 

  33. Georgakopoulos P, Roussou P, Matsakas E, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. 2010;85(11):894–6.

    Article  CAS  PubMed  Google Scholar 

  34. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol. 2018;71(20):2281–90.

    Article  CAS  PubMed  Google Scholar 

  35. Barış VÖ, Dinçsoy AB, Gedikli E, Zırh S, Müftüoğlu S, Erdem A. Empagliflozin significantly prevents the doxorubicin-induced acute cardiotoxicity via non-antioxidant pathways. Cardiovasc Toxicol. 2021;21(9):747–58.

    Article  PubMed  Google Scholar 

  36. Hitawala G, Jain E, Castellanos L, et al. Pediatric chemotherapy drugs associated with cardiotoxicity. Cureus. 2021;13(11): e19658. https://doi.org/10.7759/cureus.19658.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019;140:31–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lipshultz SE, Anderson LM, Miller TL, et al. Impaired mitochondrial function is abrogated by Dexrazoxane in doxorubicin-treated childhood acute lymphoblastic leukemia survivors. Cancer. 2016;122(6):946–53.

    Article  CAS  PubMed  Google Scholar 

  39. Aminkeng F, Bhavsar AP, Visscher H, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47(9):1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Magdy T, Jiang Z, Jouni M, et al. RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell. 2021;28(12):2076-2089.e7. https://doi.org/10.1016/j.stem.2021.08.006.

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Sun CL, Quinones-Lombrana A, et al. CELF4 variant and anthracycline-related cardiomyopathy: a Children’s Oncology Group genome-wide association study. J Clin Oncol. 2016;34(8):863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohiri JC, McNally EM. Gene editing and gene-based therapeutics for cardiomyopathies. Heart Fail Clin. 2018;14(2):179–88.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Messinis DE, Melas IN, Hur J, Varshney N, Alexopoulos LG, Bai JPF. Translational systems pharmacology-based predictive assessment of drug-induced cardiomyopathy. CPT Pharmacometrics Syst Pharmacol. 2018;7(3):166–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sapkota Y, Qin N, Ehrhardt MJ, et al. Genetic variants associated with therapy-related cardiomyopathy among childhood cancer survivors of African ancestry. Cancer Res. 2021;81(9):2556–65.

    Article  CAS  PubMed  Google Scholar 

  45. Vinodhini MT, Sneha S, Nagare RP, et al. Evaluation of a polymorphism in MYBPC3 in patients with anthracycline-induced cardiotoxicity. Indian Heart J. 2018;70(2):319–22.

    Article  PubMed  Google Scholar 

  46. Li L-P, Zhong J, Li M-H, et al. Disruption of MAP7D1 gene function increases the risk of doxorubicin-induced cardiomyopathy and heart failure. Biomed Res Int. 2021. https://doi.org/10.1155/2021/8569921.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Singh P, Wang X, Hageman L, et al. Association of GSTM1 null variant with anthracycline-related cardiomyopathy after childhood cancer—a Children’s Oncology Group ALTE03N1 report. Cancer. 2020;126(17):4051–8.

    Article  CAS  PubMed  Google Scholar 

  48. Anderson BS, Eksborg S, Vidal RF, Sundberg M, Carlberg M. Anthraquinone-induced cell injury: acute toxicity of actinomycin, epirubicin, idarubicin and mitoxantrone in isolated cardiomyocytes. Toxicology. 1999;135(1):11–20.

    Article  Google Scholar 

  49. Leerink JM, Feijen EAM, Moerland PD, et al. Candidate plasma biomarkers to detect anthracycline-related cardiomyopathy in childhood cancer survivors: a case–control study in the Dutch Childhood Cancer Survivor study. J Am Heart Assoc. 2022;11(14): e025935.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bisoc A, Ciurescu D, Rădoi M, et al. Natriuretic peptide levels in the serum can predict the development of anthracycline-induced cardiomyopathy. Am J Ther. 2020;27(2):e142–50.

    Article  PubMed  Google Scholar 

  51. Pudil R, Mueller C, Celutkiene J, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail. 2020;22:1966–83.

    Article  CAS  PubMed  Google Scholar 

  52. Lipshuntz SE, Landy DC, Lopez-Mitnik G, Lipsitz SR, Hinkle AS, Constine LS. Cardiovascular status of childhood cancer survivors exposed and unexposed to cardiotoxic therapy. J Clin Oncol. 2012;30:1050–7.

    Article  Google Scholar 

  53. Zamorano JL, Lancellotti P, Aboyans V, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines. Eur Heart J. 2016;37(36):2768–801.

    Article  PubMed  Google Scholar 

  54. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovi ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61:77–84.

    Article  PubMed  Google Scholar 

  55. Moon TJ, Miyamoto S, Younosazai AK, Landeck BF. Left ventricular strain and strain rates are decreased in children with normal fractional shortening after exposure to anthracycline chemotherapy. Cardiol Young. 2014;24(5):854–65.

    Article  PubMed  Google Scholar 

  56. Akam-Venkata J, Kadiu G, Galas J, Lipshultz SE, Aggarwal S. Left ventricle segmental function in childhood cancer survivors using speckle-tracking echocardiography. Cardiol Young. 2019;29(12):1494–500.

    Article  PubMed  Google Scholar 

  57. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63:2751–68.

    Article  PubMed  Google Scholar 

  58. Negishi T, Thavendiranathan P, Penicka M, et al. Cardioprotection using strain-guided management of potentially cardiotoxic cancer therapy: 3-year results of the SUCCOUR trial. JACC Cardiovasc Imaging. 2023;16(3):269–78.

    Article  PubMed  Google Scholar 

  59. Doherty JU, Kort S, Mehran R, et al. ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/ SCMR/STS 2019 appropriate use criteria for multimodality imaging in the assessment of cardiac structure and function in nonvalvular heart disease: a report of the American College of Cardiology appropriate use criteria task force, American association for thoracic surgery, American heart association, American society of echocardiography, American society of nuclear cardiology, heart rhythm society, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance, and the society of thoracic surgeons. J Am Coll Cardiol. 2019;73:488–516.

    Article  PubMed  Google Scholar 

  60. Deng S, Yan T, Jendrny C, et al. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting topoisomerase 2 isoforms. BMC Cancer. 2014;14:842. https://doi.org/10.1186/1471-2407-14-842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lue Y, Gao C, Swerdloff R, et al. Humanin analog enhances the protective effect of dexrazoxane against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol. 2018;315:H634–43.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wnag P, Wang L, Lu J, et al. SESN2 protects against doxorubicin-induced cardiomyopathy by rescuing mitophagy and improving mitochondrial function. J Mol Cell Cardiol. 2019;133:125–37.

    Article  Google Scholar 

  63. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.

    Article  CAS  PubMed  Google Scholar 

  64. Gupta V, Singh SK, Agrawal V, Singh TB. Role of ACE inhibitors in anthracycline-induced cardiotoxicity: a randomized, double-blind, placebo-controlled trial. Pediatr Blood Cancer. 2018;65: e27308.

    Article  PubMed  Google Scholar 

  65. Silber JH, Cnaan A, Clark BJ, et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol. 2004;22:820–8.

    Article  CAS  PubMed  Google Scholar 

  66. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20:4517–22.

    Article  CAS  PubMed  Google Scholar 

  67. Armenian S, Bhatia S. Predicting and preventing anthracycline-related cardiotoxicity. Am Soc Clin Oncol Educ Book. 2018;38:3–12.

    Article  PubMed  Google Scholar 

  68. Huang S, Zhao Q, Yang ZG, et al. Protective role of beta-blockers in chemotherapy-induced cardiotoxicity—a systematic review and meta-analysis of carvedilol. Heart Fail Rev. 2019;24(3):325–33.

    Article  CAS  PubMed  Google Scholar 

  69. El-Shitany NA, Tolba OA, El-Shanshory MR, El-Hawary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18:607–13.

    Article  CAS  PubMed  Google Scholar 

  70. Armenian SH, Hudson MM, Chen MH, et al. Rationale and design of the Children’s Oncology Group (COG) study ALTE1621: a randomized, placebo-controlled trial to determine if low-dose carvedilol can prevent anthracycline-related left ventricular remodeling in childhood cancer survivors at high risk for developing heart failure. BMC Cardiovasc Disord. 2016;16(1):187. https://doi.org/10.1186/s12872-016-0364-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Das B, Deshpande S, Venkata JA, Shakti D, Moskowitz W, Lipshulz SE. Heart failure with preserved ejection fraction in children. Pediatr Cardiol. 2022. https://doi.org/10.1007/s00246-022-02960-7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Das B, Moskowitz W, Butler J. Current and future drug and device therapies for pediatric heart failure patients: potential lessons from adult trials. Children. 2021;8(5):322. https://doi.org/10.3390/children8050322

  73. Kirk R, Dipchand AI, Rosenthal DN, et al. The International Society for Heart and Lung Transplantation guidelines for the management of pediatric heart failure executive summary. J Heart Lung Transplant. 2014;33:888–909.

    Article  PubMed  Google Scholar 

  74. Franco VI, Lipshultz SE. Cardiac complications in childhood cancer survivors treated with anthracyclines. Cardiol Young. 2015;25(Suppl 2):107–16.

    Article  PubMed  Google Scholar 

  75. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;145:e895–1032.

    PubMed  Google Scholar 

  76. De Marzo V, Savarese G, Tricarcio L, et al. Network meta-analysis of medical therapy efficacy in more than 90,000 patients with heart failure and reduced ejection fraction. J Intern Med. 2022;292:333–49.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Frey MK, Arfsten H, Pavo N, et al. Sacubitril/valsartan is well tolerated in patients with long-standing heart failure and history of cancer and improves ventricular function: real-world data. Cardio-Oncol. 2021;7:1–6.

    Google Scholar 

  78. Gregorietti V, Fernandez TL, Costa D, Chahla EO, Daniele AJ. Use of Sacubitril/valsartan in patients with cardiotoxicity and heart failure due to chemotherapy. Cardio-Oncology. 2020;6:1–6.

    Article  Google Scholar 

  79. Sheppard CE, Anwar M. The use of sacubitril/valsartan in anthracycline-induced cardiomyopathy: a mini case series. J Oncol Pharm Pract. 2019;25(5):1231–4.

    Article  CAS  PubMed  Google Scholar 

  80. Martín-García A, Díaz-Peláez E, Martín-García AC, et al. Myocardial function and structure improvement with sacubitril/valsartan in cancer therapy-induced cardiomyopathy. Rev Esp Cardiol (Engl Ed). 2020;73(3):268–9.

    Article  PubMed  Google Scholar 

  81. Mecinaj A, Gulati G, Heck SL, et al. Rationale and design of the prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA II) trial: a randomized, placebo-controlled, multicenter trial. Cardiooncology. 2021;2021(7):33. https://doi.org/10.1186/s40959-021-00115-w.

    Article  Google Scholar 

  82. Chiang CH, Chiang CH, Chiang CH, et al. Impact of sodium–glucose cotransporter-2 inhibitors on heart failure and mortality in patients with cancer. Heart. 2023;109:470–7.

    Article  PubMed  Google Scholar 

  83. Gongora CA, Drobni ZD, Costa Silva TQA, et al. Sodium–glucose co-3transporter-2 inhibitors and cardiac outcomes among patients treated with anthracyclines. JACC Heart Fail. 2022;10(8):559–67.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Khouri MG, Greene SJ. Sodium–glucose co-transporter-2 inhibitor therapy [y during anthracycline treatment: is there a role of cardioprotection? JACC Heart Fail. 2022;10:568–70.

    Article  PubMed  Google Scholar 

  85. Newland DM, Law YM, Albers EL, et al. Early clinical experience with dapagliflozin in children with heart failure. Ped Cardiol. 2023;44:146–52.

    Article  Google Scholar 

  86. Azer J, Hua R, Krishnaswamy PS, Rose RA. Effects of natriuretic peptides on electrical conduction in the sinoatrial node and atrial myocardium of the heart. J Physiol. 2014;592:1025–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Armstrong PW, Pieske B, Anstrom KJ, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382:1883–93.

    Article  CAS  PubMed  Google Scholar 

  88. Nagiub M, Filippone D, Durrant D, Das A, Kukreja RC. Long-acting PDE5 inhibitor tadalafil prevents early doxorubicin-induced left ventricle diastolic dysfunction in juvenile mice: potential role of cytoskeletal proteins. Can J Physiol Pharmacol. 2017;95:295–304.

    Article  CAS  PubMed  Google Scholar 

  89. Frisk M, Le C, Shen X, et al. Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2021;4:405–19.

    Article  Google Scholar 

  90. Merck Sharp & Dohme LLC (sponsors). Efficacy, safety, and pharmacokinetics of vericiguat in pediatric participants with heart failure due to left ventricular systolic dysfunction (MK-1242-036). ClinicalTrials.gov identifier (NCT number): NCT0571408592.

  91. Kosmala W, Marwick TH. Asymptomatic left ventricular diastolic dysfunction: predicting progression to symptomatic heart failure. JACC Cardiovasc Imaging. 2020;13:215–7.

    Article  PubMed  Google Scholar 

  92. Yu W, Li SN, Chan GC, et al. Transmural Strain and rotation gradient in survivors of childhood cancers. Eur Heart J Cardiovasc Imaging. 2013;14:175–82.

    Article  PubMed  Google Scholar 

  93. Lipshultz SE, Scully R, Stevenson KE, et al. Hearts too small for body size after doxorubicin for childhood ALL: Grinch syndrome. J Clin Oncol. 2014;32(suppl):10021A.

    Article  Google Scholar 

  94. Das B. Therapeutic approaches in heart failure with preserved ejection fraction (HFpEF) in children: present and future. Pediatr Drugs. 2022;24(3):235–46.

    Article  Google Scholar 

  95. Minotti G, Menna P, Camilli M, Salvatorelli E, Levi R. Beyond hypertension: diastolic dysfunction associated with cancer treatment in the era of cardio-oncology. Adv Pharmacol. 2022;94:365–409.

    Article  PubMed  Google Scholar 

  96. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E. Prospective comparison of ARNI with ARB on management of heart failure with preserved ejection fraction (PARAMOUNT) investigators. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind, randomized controlled trial. Lancet. 2012;380:1387–95.

    Article  CAS  PubMed  Google Scholar 

  97. Packer M, Butler J, Zannad F, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and a preserved ejection fraction: the EMPEROR-preserved trial. Circulation. 2021;144:1284–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sabatino J, De Rosa S, Tammè L, et al. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc Diabetol. 2020;19:66. https://doi.org/10.1186/s12933-020-01040-5].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bianco C, Al-Kindi SG, Oliveira GH. Advanced heart failure therapies for cancer therapeutics-related cardiac dysfunction. Heart Fail Clin. 2017;13:327–36.

    Article  PubMed  Google Scholar 

  100. Fadol AP, Mouhavar E, Reyes-Gibby CC. The use of cardiac resynchronization therapy in cancer patients with heart failure. J Clin Exp Res Cardiol. 2017;3(1). https://doi.org/10.15744/2394-6504.3.105.

  101. Oliveira GH, Qattan MY, Al-Kindi S, Park SJ. Advanced heart failure therapies for patients with chemotherapy-induced cardiomyopathy. Circ Heart Fail. 2014;7:1050–8.

    Article  PubMed  Google Scholar 

  102. Ezzeddine FM, Saliba AN, Jain V, et al. Outcomes of cardiac resynchronization therapy in patients with chemotherapy-induced cardiomyopathy. Pacing Clin Electrophysiol. 2021;44(4):625–32.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Singh JP, Solomon SD, Fradley MG, MADIT-CHIC Investigators, et al. Association of cardiac resynchronization therapy with change in left ventricular ejection fraction in patients with chemotherapy-induced cardiomyopathy. JAMA. 2019;322(18):1799–805.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rickard J, Kumbhani DJ, Baranowski B, Martin DO, Tang WH, Wilkoff BL. The usefulness of cardiac resynchronization therapy in patients with adriamycin-induced cardiomyopathy. Am J Cardiol. 2010;105(4):522–6.

    Article  CAS  PubMed  Google Scholar 

  105. Patel D, Kumar A, Moennich LA, et al. Cardiac resynchronization therapy in anthracycline-induced cardiomyopathy. Heart. 2022;108(4):274–8.

    Article  CAS  PubMed  Google Scholar 

  106. Jones BO, Davis A, Alison J, Weintraub RG, Butt W, Cheung MM. Cardiac resynchronization therapy in a child with severe anthracycline-induced congestive heart failure and normal QRS duration. J Heart Lung Transplant. 2007;26:1333–5.

    Article  PubMed  Google Scholar 

  107. Schlam I, Lee AY, Li S, et al. LeftVentricular assist devices in patients with active malignancies. JACC Cardio Oncol. 2021;3:305–15.

    Article  Google Scholar 

  108. Oliveira GH, Dupont M, Naftel D, et al. Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2014;63:240–8.

    Article  PubMed  Google Scholar 

  109. Puri K, Denfield SW, Adachi I, et al. Ventricular assist device support for children with chemotherapy-induced cardiomyopathy and advanced heart failure: perspectives gained from a single-center experience. Pediatr Transplant. 2022;26: e14286.

    Article  PubMed  Google Scholar 

  110. Oliveira GH, Hardaway BW, Kucheryavaya AY, Stehlik J, Edwards LB, Taylor DO. Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant. 2012;31:805–10.

    Article  PubMed  Google Scholar 

  111. Shugh SB, Ryan TD. Heart transplantation in survivors of childhood cancer. Transl Pediatr. 2019;8(4):314–21.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sayed N, Ameen M, Wu JC. Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell. Cardiovasc Res. 2019;115:949–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Santos DSD, Brasil GV, Ramos IPR, et al. Embryonic stem cell-derived cardiomyocytes for the treatment of doxorubicin-induced cardiomyopathy. Stem Cell Res Ther. 2018;9(1):30. https://doi.org/10.1186/s13287-018-0788-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ms Sabrina M. Freeman, BSN, RN, has edited the manuscript for English and grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuti Das.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Bibhuti Das has no potential conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

BD: Conceptualized, wrote, and revised this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B. Pharmacotherapy for Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Childhood Cancer Survivors. Pediatr Drugs 25, 695–707 (2023). https://doi.org/10.1007/s40272-023-00585-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-023-00585-8

Navigation