Skip to main content

Advertisement

Log in

A Novel Azathioprine Polysaccharide Nanoparticle Enhances the Efficacy of Systemic Lupus Erythematosus Therapy

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) patients will suffer from some level of discomfort as the disease progresses due to involvement with the respiratory system. Shrinking lung syndrome is an uncommon disease side effect. SLE has traditionally been treated with chemical immunosuppressants. But these chemical drugs have low solubility, a short half-life in circulation, poor solubility, and higher side effects. One of the most effective ways to extend the time of circulation is to combine pharmaceuticals with nanocarriers that are developed. This method is particularly interesting autoimmune disorders have not been widely employed for the treatment of cancer and other infectious diseases. Here, we use a novel biocompatible polysaccharide nanoparticle, effectively synthesizing a simple but universal drug delivery platform. The immunosuppressant azathioprine was initially conjugated onto the polysaccharide nanocarrier in this proof-of-concept trial for the treatment of SLE. The kidneys only cleared the AZA-PHA nanoparticles slowly, and they had a 30% cytotoxicity. Azathioprine-polysaccharide nanoparticles demonstrated greater therapeutic efficacy to azathioprine-polysaccharide nanoparticles in a murine SLE model without significantly increasing toxicity. This delivery method, which might act as a fresh and universal platform, might make it possible to treat SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amarnani R, Yeoh S-A, Denneny EK, Wincup C. Lupus and the lungs: The assessment and management of pulmonary manifestations of systemic lupus erythematosus. Front Med (Lausanne). 2021;7:610257–610257.

    Article  PubMed  Google Scholar 

  2. Shin JI, Lee KH, Park S, Yang JW, Kim HJ, Song K, Lee S, Na H, Jang YJ, Nam JY, Kim S, et al. Systemic lupus erythematosus and lung involvement: A comprehensive review. J Clin Med. 2022;11(22):6714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Narváez J, Borrell H, Sánchez-Alonso F, Rúa-Figueroa I, López-Longo FJ, Galindo-Izquierdo M, Calvo-Alén J, Fernández-Nebro A, Olivé A, Andreu JL, Martínez-Taboada V, et al. Primary respiratory disease in patients with systemic lupus erythematosus: Data from the Spanish rheumatology society lupus registry (RELESSER) cohort. Arthritis Res Ther. 2018;20(1):280.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pan L, Lu M-P, Wang J-H, Xu M, Yang S-R. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 2020;16(1):19–30.

    Article  PubMed  Google Scholar 

  5. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery. 2021;20(2):101–24.

    Article  PubMed  CAS  Google Scholar 

  6. Rejeeth C, Nag TC, Kannan S. Cisplatin-functionalized silica nanoparticles for cancer chemotherapy. Cancer Nanotechnol. 2013;4(6):127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rejeeth C, Vivek R, Kannan S. A novel magnetic drug delivery nanocomplex with a cisplatin-conjugated Fe3O4 core and a PEG-functionalized mesoporous silica shell for enhancing cancer drug delivery efficiency. RSC Adv. 2015;5(115):94534–8.

    Article  CAS  Google Scholar 

  8. Rejeeth C, Vivek R, NipunBabu V, Sharma A, Ding X, Qian K. Cancer nanomedicine: From PDGF targeted drug delivery. MedChemComm. 2017;8(11):2055–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vasanthakumar A, Rejeeth C, Vivek R, Ponraj T, Jayaraman K, Anandasadagopan SK, Vinayaga Moorthi P. Design of bio-graphene-based multifunctional nanocomposites exhibits intracellular drug delivery in cervical cancer treatment. ACS Appl Bio Mater. 2022;5(6):2956–64.

    Article  PubMed  CAS  Google Scholar 

  10. Reis CP. The latest developments in the area of therapeutic delivery excluding some diseases, such as COVID-19 and the big three (HIV/AID, malaria and tuberculosis). Ther Deliv. 2021;12(12):799–805.

    Article  PubMed  CAS  Google Scholar 

  11. Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022;14(4):883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Blasi P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview. J Pharm Investig. 2019;49(4):337–46.

    Article  CAS  Google Scholar 

  13. Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: Current strategies and perspectives. AAPS Open. 2022;8(1):12.

    Article  Google Scholar 

  14. Dodda JM, Remiš T, Rotimi S, Yeh Y-C. Progress in the drug encapsulation of poly(lactic-co-glycolic acid) and folate-decorated poly(ethylene glycol)–poly(lactic-co-glycolic acid) conjugates for selective cancer treatment. J Mater Chem B. 2022;10(22):4127–41.

    Article  PubMed  CAS  Google Scholar 

  15. Wei D-X, Dao J-W, Chen G-Q. A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv Mater. 2018;30(31):1802273.

    Article  Google Scholar 

  16. Chavan S, Yadav B, Tyagi RD, Drogui P. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Biores Technol. 2021;341:125900.

    Article  CAS  Google Scholar 

  17. Policastro G, Panico A, Fabbricino M. Improving biological production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) co-polymer: A critical review. Rev Environ Sci Bio/Technol. 2021;20(2):479–513.

    Article  CAS  Google Scholar 

  18. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Samir A, Ashour FH, Hakim AA, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. npj Mater Degrad. 2022;6(1):68.

    Article  CAS  Google Scholar 

  20. Tang HJ, Neoh SZ, Sudesh K. A review on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] and genetic modifications that affect its production. Front Bioeng Biotechnol. 2022;10:1057067.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McAdam B, Brennan Fournet M, McDonald P, Mojicevic M. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers (Basel). 2020;12(12):2908.

    Article  PubMed  CAS  Google Scholar 

  22. Utsunomia C, Ren Q, Zinn M. Poly(4-hydroxybutyrate): Current state and perspectives. Front Bioeng Biotechnol. 2020;8:00257.

    Article  Google Scholar 

  23. Rodriguez-Contreras A. Recent advances in the use of polyhydroyalkanoates in biomedicine. Bioengineering (Basel). 2019;6(3):82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018;23(2):362.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vellingiri S, Rejeeth C, Varukattu NB, Sharma A, Kumar RS, Almansour AI, Arumugam N, Afewerki S, Kannan S. In vivo delivery of nuclear targeted drugs for lung cancer using novel synthesis and functionalization of iron oxide nanocrystals. New J Chem. 2022;46(26):12488–99.

    Article  CAS  Google Scholar 

  26. Rejeeth C, Vivek R. Comparison of two silica based nonviral gene therapy vectors for breast carcinoma: Evaluation of the p53 delivery system in Balb/c mice. Artif Cells Nanomed Biotechnol. 2017;45(3):489–94.

    Article  PubMed  CAS  Google Scholar 

  27. Meereboer KW, Misra M, Mohanty AK. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020;22(17):5519–58.

    Article  CAS  Google Scholar 

  28. Kaniuk Ł, Stachewicz U. Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomater Sci Eng. 2021;7(12):5339–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Haist M, Mailänder V, Bros M. Nanodrugs targeting T cells in tumor therapy. Front Immunol. 2022;13:912594–912594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Prakash P, Lee W-H, Loo C-Y, Wong HSJ, Parumasivam T. Advances in polyhydroxyalkanoate nanocarriers for effective drug delivery: An overview and challenges. Nanomaterials (Basel). 2022;12(1):175.

    Article  PubMed  CAS  Google Scholar 

  31. von Borstel A, Abdulahad WH, Dekkema G, Rutgers A, Stegeman CA, Veldman J, Heeringa P, Sanders JS. Mycophenolic acid and 6-mercaptopurine both inhibit B-cell proliferation in granulomatosis with polyangiitis patients, whereas only mycophenolic acid inhibits B-cell IL-6 production. PLoS ONE. 2020;15(7):e0235743.

    Article  Google Scholar 

  32. Leitner J, Drobits K, Pickl WF, Majdic O, Zlabinger G, Steinberger P. The effects of cyclosporine A and azathioprine on human T cells activated by different costimulatory signals. Immunol Lett. 2011;140(1–2):74–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Su SM, Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics. 2020;12(9):837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett. 2021;16(1):173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017;12:7291–309.

    Article  Google Scholar 

Download references

Funding

The corresponding author is thankful for the financial support from Dr. D.S. Kothari Postdoctoral Fellowship, No. F.4-2/2006 (BSR)/BL/19-20/0217, by the University Grants Commission (UGC) of India and also Periyar University, Salem, India, for providing the necessary facilities. The project was funded by Researchers Supporting Project number (RSP2023R231), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrababu Rejeeth.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejeeth, C., Varukattu, N.B., Sharma, A. et al. A Novel Azathioprine Polysaccharide Nanoparticle Enhances the Efficacy of Systemic Lupus Erythematosus Therapy. J Pharm Innov 18, 2075–2082 (2023). https://doi.org/10.1007/s12247-023-09774-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09774-x

Keywords

Navigation