Skip to main content
Log in

Adversarial Sample Generation Method Based on Global Convolution Noise Reduction Model

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Residual network is a deep learning model widely used in various applications of computer vision, such as image processing, semantic classification and video processing. The traditional residual network is susceptible to the interference induced by the adversarial example attack algorithms, which directly affects the security of practical applications. In this work, we propose a new residual neural network based on a global convolutional denoising model. The global convolution is fused with the denoising technique, and the network structure of the global convolution denoising module is redesigned so that the denoising module can be trained end-to-end with the residual neural network. In addition, the gradient information of the network is concealed to enable the neurons to respond to the pixels that are more meaningful to human vision, thus improving the robustness of the network for adversarial example attack algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Yo., Generative adversarial networks, Commun. ACM, 2014, vol. 63, no. 11, pp. 139–144. https://doi.org/10.1145/3422622

    Article  Google Scholar 

  2. Yang, J.W., Target tracking and recognition of a moving video image based on convolution feature selection, Int. J. Biometrics, 2021, vol. 13, nos. 2–3, pp. 180–194. https://doi.org/10.1504/IJBM.2021.114646

    Article  Google Scholar 

  3. Shao, H., Liu, H., Zhang, Z., and Shen, J., Research and analysis of video image target tracking algorithm based on significance, Int. J. High Perform. Syst. Archit., 2018, vol. 8, no. 1/2, pp. 82–93. https://doi.org/10.1504/ijhpsa.2018.10015206

    Article  Google Scholar 

  4. Du, P., Zhang, J., and Long, J., Super-sampling by learning-based super-resolution, Int. J. Comput. Sci. Eng., 2020, vol. 21, no. 2, pp. 249–257. https://doi.org/10.1504/ijcse.2020.105731

    Article  Google Scholar 

  5. Shaker Balure, C. and Kini, R.M., Guidance-based improved depth upsampling with better initial estimate, Int. J. Comput. Vision Rob., 2021, vol. 11, no. 1, pp. 109–125. https://doi.org/10.1504/IJCVR.2021.111878

    Article  Google Scholar 

  6. Ghariba, B., Shehata, M., and Mcguire, P., Salient object detection using semantic segmentation technique, Int. J. Comput. Vision Rob., 2022, vol. 12, no. 1, pp. 17–38. https://doi.org/10.1504/ijcvr.2022.119240

    Article  Google Scholar 

  7. Si, H., Shi, Z., Hu, X., Wang, Yi., and Yang, C., Image semantic segmentation based on improved DeepLab V3 model, Int. J. Modell., Identification Control, 2020, vol. 36, no. 2, pp. 116–125. https://doi.org/10.1504/ijmic.2020.116199

    Article  Google Scholar 

  8. Anami, B.S. and Bhandage, V.A., SME feature-based classification of Adavu and posture images of Bharatanatyam dance, Int. J. Arts Technol., 2021, vol. 12, no. 4, pp. 317–334. https://doi.org/10.1504/IJART.2020.112640

    Article  Google Scholar 

  9. Jiang, Yi., Lu, L., and Xu, J., Enhanced view-independent representation method for skeleton-based human action recognition, Int. J. Inf. Commun. Technol., 2021, vol. 19, no. 2, pp. 201–218. https://doi.org/10.1504/IJICT.2021.117047

    Article  Google Scholar 

  10. Wang, B., Deng, J., and Sun, Ya., Image super-resolution algorithm’s research using convolutional sparse coding model, Int. J. Inf. Commun. Technol., 2019, vol. 15, no. 1, pp. 92–106. https://doi.org/10.1504/ijict.2019.102057

    Article  Google Scholar 

  11. Wang, M. and Deng, W.H., Deep visual domain adaptation: A survey, Neurocomputing, 2018, vol. 312, pp. 135–153. https://doi.org/10.1016/j.neucom.2018.05.083

    Article  Google Scholar 

  12. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Yo., Zhu, H., Xiong, H., and He, Q., A comprehensive survey on transfer learning, Proc. IEEE, 2020, vol. 109, no. 1, pp. 43–76. https://doi.org/10.1109/jproc.2020.3004555

    Article  Google Scholar 

  13. Li, L., Zhou, Zh., Wang, B., Miao, L., An, Zh., and Xiao, X., Domain adaptive ship detection in optical remote sensing images, Remote Sensing, 2021, vol. 13, no. 16, p. 3168. https://doi.org/10.3390/rs13163168

    Article  Google Scholar 

  14. Na, H. and Park, J.-S., Accented speech recognition based on end-to-end domain adversarial training of neural networks, Appl. Sci., 2021, vol. 11, no. 18, p. 8412. https://doi.org/10.3390/app11188412

    Article  Google Scholar 

  15. Tian, Q., Zhou, J., and Chu, Yi., Joint bi-adversarial learning for unsupervised domain adaptation, Knowl.-Based Syst., 2022, vol. 248, p. 108903. https://doi.org/10.1016/j.knosys.2022.108903

    Article  Google Scholar 

  16. Ganin, Ya., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., and Lempitsky, V., Domain-adversarial training of neural networks, Domain Adaptation in Computer Vision Applications, Springer International Publishing, 2016, vol. 17, pp. 189–209. https://doi.org/10.1007/978-3-319-58347-1_10

    Article  MATH  Google Scholar 

  17. Geng, J., Deng, X., Ma, X., and Jiang, W., Transfer learning for SAR image classification via deep joint distribution adaptation networks, IEEE Trans. Geosci. Remote Sensing, 2020, vol. 58, no. 8, pp. 5377–5392. https://doi.org/10.1109/TGRS.2020.2964679

    Article  Google Scholar 

  18. Kishan Babu, K. and Ram Dubey, Sh., CDGAN: Cyclic discriminative generative adversarial networks for image-to-image transformation, J. Visual Commun. Image Representation, 2022, vol. 82, p. 103382. https://doi.org/10.1016/j.jvcir.2021.103382

    Article  Google Scholar 

  19. Saito, K., Watanabe, K., Ushiku, Yo., and Harada, T., Maximum classifier discrepancy for unsupervised domain adaptation, 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Sydney, 2017, IEEE, 2017, pp. 2988–2997. https://doi.org/10.1109/cvpr.2018.00392

  20. Pei, Z., Cao, Z., Long, M., and Wang, J., Multi-adversarial domain adaptation, Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 3934–3941. https://doi.org/10.1609/aaai.v32i1.11767

  21. Yu, K., Han, H., Fu, Q., Ma, H., and Zeng, J., Symmetric co-training based unsupervised domain adaptation approach for intelligent fault diagnosis of rolling bearing, Meas. Sci. Technol., 2020, vol. 31, no. 11, p. 115008. https://doi.org/10.1088/1361-6501/ab9841

    Article  Google Scholar 

  22. Long, M.S., Cao, Z.J., and Wang, J.M., Analysis of representations for domain adaptation, Advances in Neural Information Processing Systems 19, Montréal: The MIT Press, 2018, pp. 1640–1650. https://doi.org/10.7551/mitpress/7503.003.0022

    Book  Google Scholar 

  23. Sankaranarayanan, S., Balaji, Yo., Castillo, C., and Chellappa, R., Generate to adapt: Aligning domains using generative adversarial networks, 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, 2018, IEEE, 2018, pp. 8503–8512. https://doi.org/10.1109/cvpr.2018.00887

  24. Hu, L., Kan, M., Shan, S., and Chen, X., Duplex generative adversarial network for unsupervised domain adaptation, 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, 2018, IEEE, 2018, pp. 1498–1507. https://doi.org/10.1109/cvpr.2018.00162

  25. Zhang, J., Ding, Z., Li, W., and Ogunbona, P., Importance weighted adversarial nets for partial domain adaptation, 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, 2018, IEEE, 2018, pp. 8156–8164. https://doi.org/10.1109/cvpr.2018.00851

  26. Cao, Z., Ma, L., Long, M., and Wang, J., Partial adversarial domain adaptation, Computer Vision – ECCV 2018, Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., Eds., Lecture Notes in Computer Science, vol. 11212, Cham: Springer, 2018, pp. 139–155. https://doi.org/10.1007/978-3-030-01237-3_9

    Book  Google Scholar 

  27. He, K., Zhang, X., Ren, Sh., and Sun, J., Deep residual learning for image recognition, 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016, IEEE, 2016, pp. 770–778. https://doi.org/10.1109/cvpr.2016.90

  28. Yan, H., Ding, Yu., Li, P., Wang, Q., Xu, Yo., and Zuo, W., Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation, 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017, IEEE, 2017, pp. 2272–2281. https://doi.org/10.1109/cvpr.2017.107

  29. Kajkamhaeng, S. and Chantrapornchai, C., SE-SqueezeNet: SqueezeNet extension with squeeze-and-excitation block, Int. J. Comput. Sci. Eng., 2021, vol. 24, no. 2, pp. 185–199. https://doi.org/10.1504/ijcse.2021.115105

    Article  Google Scholar 

  30. Al-Barazanchi, H.A., Qassim, H., and Verma, A., Large-scale scene image categorisation with deep learning-based model, Int. J. Comput. Vision Rob., 2020, no. 3, p. 10. https://doi.org/10.1504/IJCVR.2020.107239

  31. Kamada, S. and Ichimura, T., Fine tuning of adaptive learning of deep belief network for misclassification and its knowledge acquisition, Int. J. Comput. Intell. Stud., 2017, vol. 6, no. 4, pp. 333–348. https://doi.org/10.1504/ijcistudies.2017.089511

    Article  Google Scholar 

  32. Tan, Z., Hu, Yu., Luo, D., Hu, M., and Liu, K., The clothing image classification algorithm based on the improved Xception model, Int. J. Comput. Sci. Eng., 2020, vol. 23, no. 3, pp. 214–223. https://doi.org/10.1504/ijcse.2020.111426

    Article  Google Scholar 

  33. Lavinia, Yu., Vo, H., and Verma, A., New colour fusion deep learning model for large-scale action recognition, Int. J. Comput. Vision Rob., 2020, vol. 10, no. 1, pp. 41–60. https://doi.org/10.1504/IJCVR.2020.104356

    Article  Google Scholar 

  34. Muralimohanbabu, Y. and Radhika, K., Multi spectral image classification based on deep feature extraction using deep learning technique, Int. J. Bioinf. Res. Appl., 2021, vol. 17, no. 3, pp. 250–261. https://doi.org/10.1504/IJBRA.2021.117169

    Article  Google Scholar 

  35. Kamada, S. and Ichimura, T., Fast training of adaptive structural learning method of deep learning for multi modal data, Int. J. Comput. Intell. Stud., 2018, vol. 7, no. 3/4, pp. 169–191. https://doi.org/10.1504/ijcistudies.2018.10017446

    Article  Google Scholar 

  36. Too, E.C., Yujian, L., Gadosey, P., Njuki, S., and Essaf, F., Performance analysis of nonlinear activation function in convolution neural network for image classification, Int. J. Comput. Sci. Eng., 2020, vol. 21, no. 4, pp. 522–535. https://doi.org/10.1504/ijcse.2020.106866

    Article  Google Scholar 

  37. Handa, A., Kohli, N., and Agarwal, R., Incremental approach for multi-modal face expression recognition system using deep neural networks, Int. J. Comput. Vision Rob., 2021, vol. 11, no. 1, pp. 1–20. https://doi.org/10.1504/ijcvr.2021.10033651

    Article  Google Scholar 

  38. Pal, N., Rathore, S., and Prasad, L., A comprehensive review of deep learning models for plant disease identification and prediction, Int. J. Eng. Syst. Modell. Simul., 2021, vol. 12, nos. 2–3, pp. 165–179. https://doi.org/10.1504/IJESMS.2021.115530

    Article  Google Scholar 

  39. Wang, J., Wang, R., Dong, L., Yan, D., Zhang, X., and Lin, Yu., Towards breaking DNN-based audio steganalysis with GAN, Int. J. Auton. Adapt., 2021, vol. 14, no. 4, pp. 371–383. https://doi.org/10.1504/IJAACS.2021.119119

    Article  Google Scholar 

Download references

Funding

2021 Ministry of Education Industry-University Cooperation Collaborative Education Project, no. 202102348014. 2022 Jiangxi University of Science and Technology Natural Science and Technology Project, no. ZR2101, Project name: Research on blockchain consensus algorithm and its application in IoT data assetization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Cai.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aiping Cai Adversarial Sample Generation Method Based on Global Convolution Noise Reduction Model. Aut. Control Comp. Sci. 57, 389–399 (2023). https://doi.org/10.3103/S0146411623040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411623040028

Keywords:

Navigation