Skip to main content
Log in

Population genetic analysis and scans for adaptation and contemporary selection footprints provide genomic insight into aus, indica and japonica rice cultivars diversification

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Following domestication, rice cultivars have been spread worldwide to different climates and have experienced selection pressures to improve desirable traits. This has resulted in diverse cultivars that display variations in phenotypic traits, such as stress tolerance, grain size, and yield. To better understand the genomic composition arising from cultivar’s development and local adaptation, high-density genotypes (containing 286,183 single-nucleotide polymorphisms after the quality control) of 1284 rice cultivars of aus, indica, and temperate and tropical japonica were scanned for diversifying signatures by applying a pairwise comparison of fixation index (Fst) test. Each cultivar’s population was investigated for contemporary selection using the integrated haplotype score test. Signatures of diversifying selection among the pairwise comparisons were found in genomic regions mainly involved in response to stress (pathogens, drought, heat, cold) and development and morphology of various structures, such as root, pollen, spikelet, and grain. The most significant diversification signal between indica and japonica cultivars was detected at the location of ROX2 gene. Aus with indica comparison detected the most divergent signal at important candidate genes of OsEXPA8 and OsEXPA9, whereas temperate with tropical japonica comparison resulted in two well-known candidate genes OsHCT4 and OsGpx4. Recent selection analysis detected different patterns of contemporary selection in genomic regions related to rice breeding standard criteria such as stress tolerance, seed germination, starch content, and flowering time. Our findings highlight the underlying molecular basis of adaptive divergence and propose that modern rice breeding may provide additional diversification among rice cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahmadi N., Audebert A., Bennett M. J., Bishopp A., de Oliveira A. C., Courtois B. et al. 2014 The roots of future rice harvests. Rice 7, 1–9.

    Article  Google Scholar 

  • Alexander D. H., Novembre J. and Lange K. 2009 Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belanger E., Lucotte M., Gregoire B., Moingt M., Paquet S., Davidson R. et al. 2015 Lignin signatures of vegetation and soils in tropical environments. Adv. Environ. Res. 4, 247–262.

    Article  Google Scholar 

  • Benjamini Y. and Hochberg Y. 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Stat. Methodol. 57, 289–300.

    Google Scholar 

  • Bomba L., Nicolazzi E. L., Milanesi M., Negrini R., Mancini G., Biscarini F. et al. 2015 Relative extended haplotype homozygosity signals across breeds reveal dairy and beef specific signatures of selection. Genet. Sel. 47, 1–14.

    Google Scholar 

  • Browning B. L., Zhou Y. and Browning S. R. 2018 A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X., Shang J., Chen D., Lei C., Zou Y., Zhai W. et al. 2006 AB-lectin receptor kinase gene conferring rice blast resistance. Plant J. 46, 794–804.

    Article  CAS  PubMed  Google Scholar 

  • Chiniquy D., Varanasi P., Oh T., Harholt J., Katnelson J., Singh S. et al. 2013 Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynthesis. Front. Plant Sci. 4, 83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu G., Chen T., Wang Z., Yang J. and Zhang J. 2014 Reprint of Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res. 165, 36–48.

    Article  Google Scholar 

  • Cook D. E. and Andersen E. C. 2017 VCF-kit: assorted utilities for the variant call format. Bioinformatics 33, 1581–1582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove D. J. 2005 Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861.

    Article  CAS  PubMed  Google Scholar 

  • Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A. et al. 2011 The variant call format and VCFtools. Bioinformatics 27, 2156–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker J. E., McKay S. D., Rolf M. M., Kim J., Molina A. A., Sonstegard T. S. et al. 2014 Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10, e1004254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong N.-Q., Sun Y., Guo T., Shi C.-L., Zhang Y.-M., Kan Y. et al. 2020 UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat. Commun. 11, 1–16.

    Article  CAS  Google Scholar 

  • Durinck S., Spellman P. T., Birney E. and Huber W. 2009 Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fageria N., Slaton N. and Baligar V. 2003 Nutrient management for improving lowland rice productivity and sustainability. Adv. Agron. 80, 63–152.

    Article  CAS  Google Scholar 

  • Feuk L., Carson A. R. and Scherer S. W. 2006 Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M., Soma D. M., Iwasaki S., Nakamura S., Kanda T., Ouattara K. and Nagumo F. 2021 Site-specific responses of lowland rice to acidulated and calcined phosphate rock fertilizers in the Center-West region of Burkina Faso. PLoS One 16, e0250240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller D. Q., Sato Y.-I., Castillo C., Qin L., Weisskopf A. R., Kingwell-Banham E. J. et al. 2010 Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol. Anthropol. Sci. 2, 115–131.

    Article  Google Scholar 

  • Gamuyao R., Chin J. H., Pariasca-Tanaka J., Pesaresi P., Catausan S., Dalid C. et al. 2012 The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488, 535–539.

    Article  CAS  PubMed  Google Scholar 

  • Grossman S. R., Shylakhter I., Karlsson E. K., Byrne E. H., Morales S., Frieden G. et al. 2010 A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327, 883–886.

    Article  CAS  PubMed  Google Scholar 

  • He Z., Zou T., Xiao Q., Yuan G., Liu M., Tao Y. et al. 2021 An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation. Development 148, dev196378.

    Article  CAS  PubMed  Google Scholar 

  • Hill W. and Robertson A. 1968 Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Huang L., Wang W., Zhang N., Cai Y., Liang Y., Meng X. et al. 2021 LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol. 231, 1073–1087.

    Article  CAS  PubMed  Google Scholar 

  • Huang X., Kurata N., Wang Z.-X., Wang A., Zhao Q., Zhao Y. et al. 2012 A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam T., Manna M., Kaul T., Pandey S., Reddy C. S. and Reddy M. 2015 Genome-wide dissection of Arabidopsis and rice for the identification and expression analysis of glutathione peroxidases reveals their stress-specific and overlapping response patterns. Plant Mol. Biol. Rep. 33, 1413–1427.

    Article  CAS  Google Scholar 

  • Jensen J. D., Kim Y., DuMont V. B., Aquadro C. F. and Bustamante C. D. 2005 Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170, 1401–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing Q., Spiertz J., Hengsdijk H., Van Keulen H., Cao W. and Dai T. 2010 Adaptation and performance of rice genotypes in tropical and subtropical environments. NJAS-Wagen. J. Life Sci. 57, 149–157.

    Article  Google Scholar 

  • Joshi T., Pandey S. C., Maiti P., Tripathi M., Paliwal A., Nand M. et al. 2021 Antimicrobial activity of methanolic extracts of Vernonia cinerea against Xanthomonas oryzae and identification of their compounds using in silico techniques. Plos One 16, e0252759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C., Buresh R. J., Wang Z., Zhang H., Liu L., Yang J. and Zhang J. 2015 Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 175, 47–55.

    Article  Google Scholar 

  • Kim I. A., Kim B.-G., Kim M. and Ahn J.-H. 2012 Characterization of hydroxycinnamoyltransferase from rice and its application for biological synthesis of hydroxycinnamoyl glycerols. Phytochemistry 76, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Kiple K. F., Ornelas K. 2000 The Cambridge world history of food. Cambridge University Press.

    Book  Google Scholar 

  • Kiryu M., Hamanaka M., Yoshitomi K., Mochizuki S., Akimitsu K. and Gomi K. 2018 Rice terpene synthase 18 (OsTPS18) encodes a sesquiterpene synthase that produces an antibacterial (E)-nerolidol against a bacterial pathogen of rice. J. Genet. Plant Pathol. 84, 221–229.

    Article  CAS  Google Scholar 

  • Koiwa H., Li F., McCully M. G., Mendoza I., Koizumi N., Manabe Y. et al. 2003 The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15, 2273–2284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo M., Aguilar A., Abe J. and Morita S. 2000 Anatomy of nodal roots in tropical upland and lowland rice varieties. Plant Prod. Sci. 3(4), 437–445.

    Article  Google Scholar 

  • Kushwaha H. R., Joshi R., Pareek A. and Singla-Pareek S. L. 2016 MATH-domain family shows response toward abiotic stress in Arabidopsis and rice. Front. Plant Sci. 7, 923.

    Article  PubMed  PubMed Central  Google Scholar 

  • La Camera S., Gouzerh G., Dhondt S., Hoffmann L., Fritig B., Legrand M. and Heitz T. 2004 Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol. Rev. 198, 267–284.

    Article  PubMed  Google Scholar 

  • Lavarenne J., Gonin M., Champion A., Javelle M., Adam H., Rouster J. et al. 2020 Transcriptome profiling of laser-captured crown root primordia reveals new pathways activated during early stages of crown root formation in rice. PLoS One 15, e0238736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G. W., Lee S., Chung M.-S., Jeong Y. S. and Chung B. Y. 2015 Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses. Protoplasma 252, 997–1007.

    Article  CAS  PubMed  Google Scholar 

  • Lee I., Seo Y.-S., Coltrane D., Hwang S., Oh T., Marcotte E. M. and Ronald P. C. 2011 Genetic dissection of the biotic stress response using a genome-scale gene network for rice. PNAS 108, 18548–18553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J., Torollo G., Ndayiragije A., Berchmans B. J., Choi I., Gulles A. et al. 2018 Genetic relationship of tropical region-bred temperate japonica rice (Oryza sativa) plants and their grain yield variations in three different tropical environments. Plant Breed. 137, 857–864.

    Article  CAS  Google Scholar 

  • Lee S.-K., Eom J.-S., Hwang S.-K., Shin D., An G., Okita T. W. and Jeon J.-S. 2016 Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. J. Exp. Bot. 67, 5557–5569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F., Li W., Lin Y., Pickett J. A., Birkett M. A., Wu K. et al. 2018 Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest. Plant Cell Environ. 41, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Li L.-F., Li Y.-L., Jia Y., Caicedo A. L. and Olsen K. M. 2017 Signatures of adaptation in the weedy rice genome. Nat. Genet. 49, 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Li P. and Xue H. 2011 Structural characterization and expression pattern analysis of the rice PLT gene family. Acta Biochim. Biophys. Sin. 43, 688–697.

    Article  CAS  PubMed  Google Scholar 

  • Li X., Yang Y., Yao J., Chen G., Li X., Zhang Q. and Wu C. 2009 FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol. Biol. 69, 685–697.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q., Dong G.-R., Ma Y.-Q., Zhao S.-M., Liu X., Li X.-K. et al. 2021a Rice glycosyltransferase gene UGT85E1 Is involved in drought stress tolerance through enhancing abscisic acid response. Front. Plant Sci. 12, 790195–790195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S., Zhong J., Ling S., Liu Y., Xu Y. and Yao J. 2021b OsAPT1 a pollen preferentially expressed gene is essential for pollen tube germination and elongation in rice. Plant Mol. Biol. Rep. 39, 87–97.

    Article  CAS  Google Scholar 

  • Londo J. P., Chiang Y.-C., Hung K.-H., Chiang T.-Y. and Schaal B. A. 2006 Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. U. S. a. 103, 9578–9583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C.-A., Lin C.-C., Lee K.-W., Chen J.-L., Huang L.-F., Ho S.-L. et al. 2007 The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19, 2484–2499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma N., Wang Y., Qiu S., Kang Z., Che S., Wang G. and Huang J. 2013 Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS One 8, e75997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch S. R., Wright M. H., Tung C.-W., Maron L. G., McNally K. L., Fitzgerald M. et al. 2016 Open access resources for genome-wide association mapping in rice. Nat. Commun. 7, 1–14.

    Google Scholar 

  • Nayidu N. K., Wang L., Xie W., Zhang C., Fan C., Lian X. et al. 2008 Comprehensive sequence and expression profile analysis of PEX11 gene family in rice. Gene 412, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Nei M. and Chesser R. K. 1983 Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Niño-liu D. O., Ronald P. C. and Bogdanove A. J. 2006 Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7, 303–324.

    Article  PubMed  Google Scholar 

  • de Oliveira L. F. V., Christoff A. P., de Lima J. C., de Ross B. C. F., Sachetto-Martins G., Margis-Pinheiro M. and Margis R. 2014 The Wall-associated Kinase gene family in rice genomes. Plant Sci. 229, 181–192.

    Article  PubMed  Google Scholar 

  • Onda Y., Nagamine A., Sakurai M., Kumamaru T., Ogawa M. and Kawagoe Y. 2011 Distinct roles of protein disulfide isomerase and P5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice. Plant Cell 23, 210–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang Y., Huang X., Lu Z. and Yao J. 2012 Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genom. 13, 1–15.

    Article  Google Scholar 

  • Pan X., Li Y., Zhang H., Liu W., Dong Z., Liu L. et al. 2021 The chloroplast-localized protein LTA1 regulates tiller angle and yield of rice. Crop J. 10, 952–961.

    Article  Google Scholar 

  • Park H. L., Kim T. L., Bhoo S. H., Lee T. H., Lee S.-W. and Cho M.-H. 2018 Biochemical characterization of the rice cinnamyl alcohol dehydrogenase gene family. Molecules 23, 2659.

    Article  PubMed  PubMed Central  Google Scholar 

  • Passaia G., Caverzan A., Fonini L., Carvalho F., Silveira J. and Margis-Pinheiro M. 2014 Chloroplastic and mitochondrial GPX genes play a critical role in rice development. Biol. Plant. 58, 375–378.

    Article  CAS  Google Scholar 

  • Peng H., Chen Z., Fang Z., Zhou J., Xia Z., Gao L. et al. 2015 Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Sci. Rep. 5, 1–12.

    Google Scholar 

  • Ponniah S. K., Shang Z., Akbudak M. A., Srivastava V. and Manoharan M. 2017 Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase, cinnamoyl CoA reductase, and cinnamyl alcohol dehydrogenase leads to lignin reduction in rice (Oryza sativa L. ssp. japonica cv. Nipponbare). Plant Biotechnol. Rep. 11, 17–27.

    Article  Google Scholar 

  • Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D. et al. 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin C., Li Y., Gan J., Wang W., Zhang H., Liu Y. and Wu P. 2013 OsDGL1, a homolog of an oligosaccharyltransferase complex subunit, is involved in N-glycosylation and root development in rice. Plant Cell Physiol. 54, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. 2020 R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.

  • Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H. and Vilo J. 2019 g: profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebouillat J., Dievart A., Verdeil J.-L., Escoute J., Giese G., Breitler J.-C. et al. 2009 Molecular genetics of rice root development. Rice 2, 15–34.

    Article  Google Scholar 

  • Sabeti P. C., Reich D. E., Higgins J. M., Levine H. Z., Richter D. J., Schaffner S. F. et al. 2002 Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837.

    Article  CAS  PubMed  Google Scholar 

  • Sabeti P. C., Varilly P., Fry B., Lohmueller J., Hostetter E., Cotsapas C. et al. 2007 Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu A., Das A., Saikia K. and Barah P. 2020 Temperature differentially modulates the transcriptome response in Oryza sativa to Xanthomonas oryzae pv. oryzae infection. Genomics 112, 4842–4852.

    Article  CAS  PubMed  Google Scholar 

  • Seo J., Lee G., Jin Z., Kim B., Chin J. H. and Koh H.-J. 2020 Development and application of indica–japonica SNP assays using the Fluidigm platform for rice genetic analysis and molecular breeding. Mol. Breed. 40, 1–16.

    Article  Google Scholar 

  • Shi J., Hu H., Zhang K., Zhang W., Yu Y., Wu Z. and Wu P. 2014 The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice. J. Exp. Bot. 65, 859–870.

    Article  CAS  PubMed  Google Scholar 

  • Shin J.-H., Jeong D.-H., Park M. C. and An G. 2005 Characterization and transcriptional expression of the α-Expansin gene family in rice. Mol. Cell 20, 210–218.

    CAS  Google Scholar 

  • Sweeney M. T., Thomson M. J., Cho Y. G., Park Y. J., Williamson S. H., Bustamante C. D. and McCouch S. R. 2007 Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet. 3, e133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi H., Wang S., Hayashi S., Wakasa Y. and Takaiwa F. 2014 Cis-element of the rice PDIL2-3 promoter is responsible for inducing the endoplasmic reticulum stress response. J. Biosci. Bioeng. 117, 620–623.

    Article  CAS  PubMed  Google Scholar 

  • Tang T. and Shi S. 2007 Molecular population genetics of rice domestication. J. Integr. Plant Biol. 49, 769–775.

    Article  CAS  Google Scholar 

  • Venables W. N., Ripley B. D. 2013 Modern applied statistics with S-PLUS, Springer, New York.

    Google Scholar 

  • Voight B. F., Kudaravalli S., Wen X. and Pritchard J. K. 2006 A map of recent positive selection in the human genome. PLoS Biol. 4, e72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P., Hsu C.-C., Du Y., Zhu P., Zhao C., Fu X. et al. 2020 Mapping proteome-wide targets of protein kinases in plant stress responses. Proc. Natl. Acad. Sci. U. S. a. 117, 3270–3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir B. S. and Cockerham C. C. 1984 Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • Wickham H. 2011 ggplot2. Wiley interdisciplinary reviews. Compt. Stat. 3, 180–185.

    Google Scholar 

  • Woo Y.-M., Park H.-J., Su’udi M., Yang J.-I., Park J.-J., Back K. et al. 2007 Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol. Biol. 65, 125–136.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z., Zhang S., Ford-Lloyd B., Jin X., Wu Y., Yan H. et al. 2011 Latitudinal distribution and differentiation of rice germplasm: its implications in breeding. Crop Sci. 51, 1050–1058.

    Article  Google Scholar 

  • Yang X., Wang J., Xia X., Zhang Z., He J., Nong B. et al. 2021 OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J. 107, 198–214.

    Article  CAS  PubMed  Google Scholar 

  • Yin L., Zhang H., Tang Z., Xu J., Yin D., Zhang Z. et al. 2021 rmvp: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 19, 619–628.

    Article  Google Scholar 

  • Yoshida S., Benta W. 1983 Potential productivity of field crops under different environments, IRRI, Los Banos, Philippines..

    Google Scholar 

  • Yuan Y., Zhang Q., Zeng S., Gu L., Si W., Zhang X. et al. 2017 Selective sweep with significant positive selection serves as the driving force for the differentiation of japonica and indica rice cultivars. BMC Genome 18, 1–13.

    Article  Google Scholar 

  • Zhang C., Dong S.-S., Xu J.-Y., He W.-M. and Yang T.-L. 2019 PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788.

    Article  CAS  PubMed  Google Scholar 

  • Zhao K., Wright M., Kimball J., Eizenga G., McClung A., Kovach M. et al. 2010 Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5, e10780.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q., Feng Q., Lu H., Li Y., Wang A., Tian Q. et al. 2018 Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y., Crawford G. W., Jiang L. and Chen X. 2016 Rice domestication revealed by reduced shattering of archaeological rice from the Lower Yangtze valley. Sci. Rep. 6, 1–9.

    Google Scholar 

  • Zhou G., Ren N., Qi J., Lu J., Xiang C., Ju H. et al. 2014 The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiol. Plant. 152, 59–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the researchers involved in Rice Diversity Project for sharing the data publicly for research purposes.

Author information

Authors and Affiliations

Authors

Contributions

SV, MA, SS conceived the study. SV, MM, SM carried out the analyses. SV, MA, and SS interpreted the results. SV drafted the manuscript. MB, MH, and MB edited and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmoud Amiri Roudbar.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahedi, S.M., Momen, M., Mousavi, S.F. et al. Population genetic analysis and scans for adaptation and contemporary selection footprints provide genomic insight into aus, indica and japonica rice cultivars diversification. J Genet 102, 43 (2023). https://doi.org/10.1007/s12041-023-01440-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-023-01440-y

Keywords

Navigation