Skip to main content
Log in

Recent advancements in volumetric flow meter for industrial application

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The technological development in measuring devices is massive due to the need for accurate flow measurements in various industries. However, the problem is choice of the flow meter for the complex and harsh environmental industrial applications. Due to the varied characteristic of gas and liquids, the mass flow meter provides an inaccurate result. Hence, this paper introduces the advancements in volumetric flow meters that provide highly accurate flow measurements. The various volumetric flow meter investigated in the paper are used for measurement of liquid, gas, and multi-phase flow. The study shows that electromagnetic is more suitable for complex environments of chemical and petroleum industries. The ultrasonic flow meter is a better alternative than the electromagnetic meter when the price is not a major concern. The ultrasonic flow meter also provides higher accuracy than other measurement techniques in multiple-phase-flow condition. However, electromagnetic measurements are only suitable for conducting liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article.

References

  1. Medeiros KAR, Barbosa CRH, De Oliveira EC (2015) Flow measurement by piezoelectric accelerometers: Application in the oil industry. Pet Sci Technol 33(13–14):1402–1409

    Article  Google Scholar 

  2. Varchanis S, Haward SJ, Hopkins CC, Syrakos A, Shen AQ, Dimakopoulos Y, Tsamopoulos J (2020) Transition between solid and liquid state of yield-stress fluids under purely extensional deformations. Proc Natl Acad Sci 117(23):12611–12617

    Article  Google Scholar 

  3. Jo B, Banerjee D (2015) Enhanced specific heat capacity of molten salt-based carbon nanotubes nanomaterials. J Heat Transf 137(9)

  4. Andrzej DM (2015) Exhaust emission test performance with the use of the signal from air flow meter. Eksploatacja i Niezawodność 17(1):129–134

    Article  Google Scholar 

  5. Kolhe VA, Edlabadkar RL (2021) Performance evaluation of Coriolis mass flow meter in laminar flow regime. Flow Meas Instrum 77:101837

    Article  Google Scholar 

  6. Ejeian F, Azadi S, Razmjou A, Orooji Y, Kottapalli A, Warkiani ME, Asadnia M (2019) Design and applications of MEMS flow sensors: A review. Sens Actuators, A 295:483–502

    Article  Google Scholar 

  7. Yang H, Zhang L, Li L, Liang H, Zou J (2021) Error analysis and accuracy calibration method of U-tube Coriolis mass flowmeter under pulsating flow. IEEE Trans Instrum Meas 70:1–13

    Article  Google Scholar 

  8. Javaid A, Mohammed A, Ghaithan A (2022) A regression-based model for prediction of flowmeters calibration cost in oil and gas industry. Flow Meas Instrum 86:102191

    Article  Google Scholar 

  9. Husni NL, Basri H, Yani I (2019) Challenges in turbine flow metering system: An overview. J Phys Conf Ser 1198(4):042010. IOP Publishing

  10. Rzasa MR, Czapla-Nielacna B (2021) Analysis of the influence of the Vortex Shedder shape on the metrological properties of the vortex flow meter. Sensors 21(14):4697

    Article  Google Scholar 

  11. Robba C, Cardim D, Tajsic T, Pietersen J, Bulman M, Donnelly J, Lavinio A (2017) Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. PLoS Med 14(7):e1002356

    Article  Google Scholar 

  12. Liu M, Wu Y, Song H, Zou Y, Shu X (2022) Multiparameter measuring system using fiber optic sensors for hydraulic temperature. pressure and flow monitoring. Measurement 190:110705

  13. Schena E, Massaroni C, Saccomandi P, Cecchini S (2015) Flow measurement in mechanical ventilation: A review. Med Eng Phys 37(3):257–264

    Article  Google Scholar 

  14. Niclauss L (2017) Techniques and standards in intraoperative graft verification by transit time flow measurement after coronary artery bypass graft surgery: a critical review. Eur J Cardiothorac Surg 51(1):26–33

    Article  Google Scholar 

  15. Honda K, Okamura Y, Nishimura Y, Uchita S, Yuzaki M, Kaneko M, Yamamoto N, Kubo T, Akasaka T (2015) Graft flow assessment using a transit time flow meter in fractional flow reserve–guided coronary artery bypass surgery. J Thorac Cardiovasc Surg 149(6):1622–1628

    Article  Google Scholar 

  16. Chen G, Liu G, Zhu B, Tan W (2015) 3D isosceles triangular ultrasonic path of transit-time ultrasonic flowmeter: theoretical design and CFD simulations. IEEE Sens J 15(9):4733–4742

    Article  Google Scholar 

  17. Hamouda A, Manck O, Hafiane ML, Bouguechal NE (2016) An enhanced technique for ultrasonic flow metering featuring very low jitter and offset. Sensors 16(7):1008

    Article  Google Scholar 

  18. Kim T, Kim J, Jiang X (2017) Transit time difference flowmeter for intravenous flow rate measurement using 1–3 piezoelectric composite transducers. IEEE Sens J 17(17):5741–5748

    Article  Google Scholar 

  19. Zhang H, Guo C, Lin J (2019) Effects of velocity profiles on measuring accuracy of transit-time ultrasonic flowmeter. Appl Sci 9(8):1648

    Article  Google Scholar 

  20. Kiefer DA, Benkert A, Rupitsch SJ (2022) Transit Time of Lamb Wave-Based Ultrasonic Flow Meters and the Effect of Temperature. IEEE Trans Ultrason Ferroelectr Freq Control 69(10):2975–2983

    Article  Google Scholar 

  21. Jiang Y, Wang B, Huang Z, Ji H, Li H, Li X (2016) A model-based transit-time ultrasonic gas flowrate measurement method. IEEE Trans Instrum Meas 66(5):879–887

    Article  Google Scholar 

  22. Zhou H, Ji T, Wang R, Ge X, Tang X, Tang S (2018) Multi-path ultrasonic gas flow-meter based on multiple reference waves. Ultrasonics 82:145–152

    Article  Google Scholar 

  23. Tian L, Xu KJ, Mu LB, Liu B (2018) Echo energy integral based signal processing method for ultrasonic gas flow meter. Sens Actuators, A 277:181–189

    Article  Google Scholar 

  24. Jäger A, Unger A, Wang H, Arnaudov Y, Kang L, Su R, Lines D, Ramadas SN, Dixon S, Kupnik M (2017) Ultrasonic phased array for sound drift compensation in gas flow metering. In 2017 IEEE International Ultrasonics Symposium (IUS), IEEE 1–4

  25. Chen X, Liu C, Yang D, Liu X, Hu L, Xie J (2019) Highly accurate airflow volumetric flowmeters via pMUTs arrays based on transit time. J Microelectromech Syst 28(4):707–716

    Article  Google Scholar 

  26. Mousavi SF, Hashemabadi SH, Jamali J (2020) Calculation of geometric flow profile correction factor for ultrasonic flow meter using semi-3D simulation technique. Ultrasonics 106:106165

    Article  Google Scholar 

  27. Yan Y, Wang L, Wang T, Wang X, Hu Y, Duan Q (2018) Application of soft computing techniques to multi-phase flow measurement: A review. Flow Meas Instrum 60:30–43

    Article  Google Scholar 

  28. Simurda M, Duggen L, Basse NT, Lassen B (2016) Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions. In 2016 IEEE Int Ultrason Symp (IUS)IEEE1–6

  29. Simurda M, Duggen L, Basse NT, Lassen B (2017) A Fourier collocation approach for transit-time ultrasonic flowmeter under multi-phase flow conditions. J Comput Acoust 25(04):1750005

    Article  MathSciNet  Google Scholar 

  30. Figueiredo MMF, Goncalves JL, Nakashima AMV, Fileti AMF, Carvalho RDM (2016) The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multi-phase flows. Exp Thermal Fluid Sci 70:29–50

    Article  Google Scholar 

  31. Xu Y, Yu P, Zhu Z, Yuan C, Zhang T (2017) Over-reading modeling of the ultrasonic flow meter in wet gas measurement. Measurement 98:17–24

    Article  Google Scholar 

  32. Murakawa H, Ichimura S, Sugimoto K, Asano H, Umezawa S, Sugita K (2020) Evaluation method of transit time difference for clamp-on ultrasonic flowmeters in two-phase flows. Exp Thermal Fluid Sci 112:109957

    Article  Google Scholar 

  33. Meribout M, Shehzad F, Kharoua N, Khezzar L (2020) An ultrasonic-based multiphase flow composition meter. Measurement 161:107806

    Article  Google Scholar 

  34. Shourcheh SD, Rezazadeh G (2016) Mechanical analysis of ultrasonic flow meter based on Doppler effect. In 2016 4th International Conference on Robotics and Mechatronics (ICROM), IEEE 14–19

  35. Dang Y, Chen W (2018) Design of oil-immersed apparatus oil velocity measure system based on the ultrasonic wave doppler effect. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) 1–4

  36. Basarab M, Konnova N, Basarab D (2019) Compression and Analysis of Ultrasonic Doppler Blood Flow Meter Data by the Discrete Chebyshev Transform. In 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring) IEEE 3338–3341

  37. Tan C, Murai Y, Liu W, Tasaka Y, Dong F, Takeda Y (2021) Ultrasonic Doppler technique for application to multi-phase flows: A review. Int J Multiph Flow 144:103811

  38. Dong X, Tan C, Yuan Y, Dong F (2016) Oil–water two-phase flow measurement with combined ultrasonic transducer and electrical sensors. Meas Sci Technol 27(12):125307

    Article  Google Scholar 

  39. Dong X, Tan C, Yuan Y, Dong F (2015) Measuring oil–water two-phase flow velocity with continuous-wave ultrasound Doppler sensor and drift-flux model. IEEE Trans Instrum Meas 65(5):1098–1107

    Article  Google Scholar 

  40. Abbagoni BM, Yeung H (2016) Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network. Meas Sci Technol 27(8):084002

    Article  Google Scholar 

  41. Liu W, Tan C, Dong X, Dong F, Murai Y (2018) Dispersed oil–water two-phase flow measurement based on pulse-wave ultrasonic Doppler coupled with electrical sensors. IEEE Trans Instrum Meas 67(9):2129–2142

    Article  Google Scholar 

  42. Nnabuife SG, Pilario KES, Lao L, Cao Y, Shafiee M (2019) Identification of gas-liquid flow regimes using a non-intrusive Doppler ultrasonic sensor and virtual flow regime maps. Flow Meas Instrum 68:101568

    Article  Google Scholar 

  43. Shi X, Tan C, Wu H, Dong F (2020) An electrical and ultrasonic Doppler system for industrial multi-phase flow measurement. IEEE Trans Instrum Meas 70:1–13

    Google Scholar 

  44. Abbagoni BM, Yeung H, Lao L (2022) Non-invasive measurement of oil-water two-phase flow in vertical pipe using ultrasonic Doppler sensor and gamma ray densitometer. Chem Eng Sci 248:117218

    Article  Google Scholar 

  45. Meribout M, Azzi A, Ghendour N, Kharoua N, Khezzar L, AlHosani E (2020) Multi-phase flow meters targeting oil & gas industries. Measurement 165:108111

    Article  Google Scholar 

  46. Hansen LS, Pedersen S, Durdevic P (2019) Multi-phase flow metering in offshore oil and gas transportation pipelines: Trends and perspectives. Sensors 19(9):2184

    Article  Google Scholar 

  47. Yang Y, Ha W, Zhang C, Liu M, Zhang X, Wang D (2022) Measurement of high-water-content oil-water two-phase flow by electromagnetic flowmeter and differential pressure based on phase-isolation. Flow Meas Instrum 84:102142

    Article  Google Scholar 

  48. Bahrami B, Mohsenpour S, Noghabi HRS, Hemmati N, Tabzar A (2019) Estimation of flow rates of individual phases in an oil-gas-water multi-phase flow system using neural network approach and pressure signal analysis. Flow Meas Instrum 66:28–36

    Article  Google Scholar 

  49. Vemulapalli S, Venkata SK (2022) Parametric analysis of orifice plates on measurement of flow: A review. Ain Shams Engineering Journal 13(3):101639

    Article  Google Scholar 

  50. Bikić S, Đurđević M, Bukurov M, Tašin S (2022) Comparison of single-hole and multi-hole orifice energy consumption. Adv Mech Eng 14(1):16878140221075460

    Article  Google Scholar 

  51. Mehmood MA, Ibrahim MA, Ullah A, Inayat MH (2019) CFD study of pressure loss characteristics of multi-holed orifice plates using central composite design. Flow Meas Instrum 70:101654

    Article  Google Scholar 

  52. Singh VK, Tharakan TJ (2015) Numerical simulations for multi-hole orifice flow meter. Flow Meas Instrum 45:375–383

    Article  Google Scholar 

  53. Divekar P, Bondre A, Bhoir N, Sajjanshetty V, Gohel NS, JyotiPrakash A, Kumar K (2023) Experimental investigation of hydrodynamic cavitation of single and multiple hole orifice for wastewater treatment. Materials Today: Proceedings 72:1841–1846

    Google Scholar 

  54. Ghorbani H, Wood DA, Choubineh A, Tatar A, Abarghoyi PG, Madani M, Mohamadian N (2020) Prediction of oil flow rate through an orifice flow meter: Artificial intelligence alternatives compared. Petroleum 6(4):404–414

    Article  Google Scholar 

  55. Abad ARB, Tehrani PS, Naveshki M, Ghorbani H, Mohamadian N, Davoodi S, Aghdam SK, Moghadasi J, Saberi H (2021) Predicting oil flow rate through orifice plate with robust machine learning algorithms. Flow Meas Instrum 81:102047

    Article  Google Scholar 

  56. Bekraoui A, Hadjadj A, Benmounah A, Oulhadj M (2019) Uncertainty study of fiscal orifice meter used in a gas Algerian field. Flow Meas Instrum 66:200–208

    Article  Google Scholar 

  57. Weise J, Baliño JL, Paladino EE (2021) CFD study of the transient wet gas flow behavior through orifice plate flow meters. Flow Meas Instrum 82:102077

    Article  Google Scholar 

  58. Zhao B, Hu L, Zhao Q, Zhou X (2020) Investigation of variable orifice plate design for centrifugal compressor low-end performance improvement. Aerosp Sci Technol 97:105585

    Article  Google Scholar 

  59. Đurđević M, Bukurov M, Tašin S, Bikić S (2020) Numerical study of single-hole and multi-holes orifice flow parameters. Journal of Applied Fluid Mechanics 14(1):215–226

    Google Scholar 

  60. Fadaei M, Ameli F, Hashemabadi SH (2019) Experimental study and CFD simulation of two-phase flow measurement using orifice flow meter. Journal of Petroleum Research 29(98–5):85–96

    Google Scholar 

  61. Mubarok MH, Zarrouk SJ, Cater JE (2019) Two-phase flow measurement of geothermal fluid using orifice plate: Field testing and CFD validation. Renewable Energy 134:927–946

    Article  Google Scholar 

  62. Bamidele OE, Ahmed WH, Hassan M (2019) Two-phase flow induced vibration of piping structure with flow restricting orifices. International Journal of Multi-phase Flow 113:59–70

    Article  Google Scholar 

  63. Fadaei M, Ameli F, Hashemabadi SH (2021) Investigation on different scenarios of two-phase flow measurement using Orifice and Coriolis flow meters: Experimental and modeling approaches. Measurement 175:108986

    Article  Google Scholar 

  64. Chen Y, Li Y, Zhou X, Xie Y (2021) A multi-level assessment and correction method for Venturi tube flow measurements. Nucl Eng Des 379:111262

    Article  Google Scholar 

  65. Titheradge PJ, Robergs R (2018) Venturi tube calibration for airflow and volume measurement. Flow Meas Instrum 60:200–207

    Article  Google Scholar 

  66. De AS, Joppolo CM, Liberati P (2019) Performance measurement of a cross-flow indirect evaporative cooler: Effect of water nozzles and airflows arrangement. Energy and Buildings 184:114–121

    Article  Google Scholar 

  67. Mohapatra CK, Schmidt DP, Sforzo BA, Matusik KE, Yue Z, Powell CF, Som S (2020) Collaborative investigation of the internal flow and near-nozzle flow of an eight-hole gasoline injector (Engine Combustion Network Spray G). Int J Engine Res 1468087420918449

  68. Nasiruddin S, Singh SN, Veeravalli SV, Hegde S (2019) Shape optimization of the cone body for the improved performance of the V-cone flowmeter: A numerical study. Flow Meas Instrum 66:111–118

    Article  Google Scholar 

  69. Nasiruddin S, Singh S, Hegde S, Verma A, Design of a composite body for improved performance of a V-Cone flowmeter. 1–14. Available at SSRN 4092633

  70. Nasiruddin S, Singh SN, Veeravalli SV, Hegde S (2019) Effect of vertex angle and vertex tip radius on the performance of V-cone flow meter using CFD. Measurement 138:536–544

    Article  Google Scholar 

  71. Nasiruddin S, Singh SN, Veeravalli SV, Hegde S (2020) Flow characteristics of back supported V-cone flowmeter (wafer cone) using PIV. Flow Meas Instrum 73:101750

    Article  Google Scholar 

  72. Sheikh N, Singh SN, Veeravalli SV, Hegde S (2020) Effect of Reynolds number and boundary layer thickness on the performance of V-cone flowmeter using CFD. Flow Meas Instrum 73:101728

    Article  Google Scholar 

  73. Fasano M, Ventola L, Calignano F, Manfredi D, Ambrosio EP, Chiavazzo E, Asinari P (2016) Passive heat transfer enhancement by 3D printed Pitot tube based heat sink. Int Commun Heat Mass Transfer 74:36–39

    Article  Google Scholar 

  74. Care I, Fourneaux F (2020) Investigation of the pressure response of different Pitot tubes. Flow Meas Instrum 72:101714

    Article  Google Scholar 

  75. Spelay RB, Adane KF, Sanders RS, Sumner RJ, Gillies RG (2015) The effect of low Reynolds number flows on pitot tube measurements. Flow Meas Instrum 45:247–254

    Article  Google Scholar 

  76. Kang W, Trang ND, Lee SH, Choi HM, Shim JS, Jang HS, Choi YM (2015) Experimental and numerical investigations of the factors affecting the S-type Pitot tube coefficients. Flow Meas Instrum 44:11–18

    Article  Google Scholar 

  77. Brinkhorst S, Lavante EV, Wendt G (2015) Numerical investigation of cavitating Herschel Venturi-Tubes applied to liquid flow metering. Flow Meas Instrum 43:23–33

    Article  Google Scholar 

  78. Yeo SH, Lee SR, Lee CH (2015) Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter. J Mech Sci Technol 29:241–249

    Article  Google Scholar 

  79. Cui C, Cai W, Chen H (2018) Airflow measurements using averaging Pitot tube under restricted conditions. Build Environ 139:17–26

    Article  Google Scholar 

  80. He D, Chen S, Bai B (2019) A V-Cone meter measurement correlation in low pressure wet gas based on Chisholm model. Flow Meas Instrum 66:12–17

    Article  Google Scholar 

  81. Gupta B, Nayak AK, Kandar TK, Nair S (2016) Investigation of air–water two phase flow through a venturi. Exp Thermal Fluid Sci 70:148–154

    Article  Google Scholar 

  82. Dehkordi PB, Colombo LPM, Guilizzoni M, Sotgia G (2017) CFD simulation with experimental validation of oil-water core-annular flows through Venturi and Nozzle flow meters. J Petrol Sci Eng 149:540–552

    Article  Google Scholar 

  83. Fiebach A, Schmeyer E, Knotek S, Schmelter S (2016) Numerical simulation of multi-phase flow in a vertically mounted Venturi flow meter. In Proceedings of the 17th international flow measurement conference FLOMEKO 26–29

  84. Pan Y, Li C, Ma Y, Huang S, Wang D (2019) Gas flow rate measurement in low-quality multi-phase flows using Venturi and gamma ray. Exp Thermal Fluid Sci 100:319–327

    Article  Google Scholar 

  85. Fang L, Wang S, Li S, Faraj Y, Tian J, Li X (2020) Phase Content and Flow Measurement of Bubble Flow based on New Experimental Pipeline. J Appl Fluid Mech 13(2):469–478

    Article  Google Scholar 

  86. Zhan M, Xie CG, Shu JJ (2022) Microwave probe sensing location for Venturi-based real-time multi-phase flowmeter. J Petrol Sci Eng 218:111027

    Article  Google Scholar 

  87. Mubarok MH, Cater JE, Zarrouk SJ (2020) Comparative CFD modelling of pressure differential flow meters for measuring two-phase geothermal fluid flow. Geothermics 86:101801

    Article  Google Scholar 

  88. Zheng X, Sun X, Bai B (2018) Flow rate measurement of low GVF gas-liquid two-phase flow with a V-Cone meter. Exp Thermal Fluid Sci 91:175–183

    Article  Google Scholar 

  89. Jazirian H, Jafarkazemi F, Rabieefar H (2023) A numerical model for simulating separated gas-liquid two-phase flow with low GVF in a V-cone flowmeter. Flow Meas Instrum 102329

  90. Watral Z, Jakubowski J, Michalski A (2015) Electromagnetic flow meters for open channels: Current state and development prospects. Flow Meas Instrum 42:16–25

    Article  Google Scholar 

  91. Li B, Yan Y, Chen J (2020) Signal Processing Scheme of Step Excitation Electromagnetic Flowmeter Based on Outlier Elimination and Double Median Filtering. In 2020 6th International Conference on Control, Automation and Robotics (ICCAR) 632–637. IEEE

  92. Slavik L, Novak M (2017) Magnetic circuit of electromagnetic flow meter with capacitive electrodes. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM) 1–5. IEEE

  93. Yin S, Li B, Meng K, Chen J (2018) Performance differences of an electromagnetic flow sensor with non-ideal electrodes based on different-dimensional weight functions. IEEE Trans Instrum Meas 67(7):1738–1748

    Article  Google Scholar 

  94. Gao K, Cui Z, Xia Z, Wang H (2021) Hardware Implementation and Evaluation of Electromagnetic Flow Tomography System for Water-Continuous Flows. IEEE Trans Instrum Meas 71:1–9

    Google Scholar 

  95. Pavlinov A, Khalilov R, Mamykin A, Kolesnichenko I (2019) Electromagnetic flowmeter for wide-temperature range intensive liquid metal flows. In IOP Conference Series: Materials Science and Engineering, 581(1): 012011. IOP Publishing

  96. Faraj Y, Wang M, Jia J, Wang Q, Xie C, Oddie G, Primrose K, Qiu C (2015) Measurement of vertical oil-in-water two-phase flow using dual-modality ERT–EMF system. Flow Meas Instrum 46:255–261

    Article  Google Scholar 

  97. Yang Y, Wang D, Niu P, Liu M, Wang S (2018) Gas-liquid two-phase flow measurements by the electromagnetic flowmeter combined with a phase-isolation method. Flow Meas Instrum 60:78–87

    Article  Google Scholar 

  98. Ma L, McCann D, Hunt A (2017) Combining magnetic induction tomography and electromagnetic velocity tomography for water continuous multi-phase flows. IEEE Sens J 17(24):8271–8281

    Article  Google Scholar 

  99. Vauhkonen M, Hänninen A, Jauhiainen J, Lehtikangas O (2019) Multimodal imaging of multi-phase flows with electromagnetic flow tomography and electrical tomography. Meas Sci Technol 30(9):094001

    Article  Google Scholar 

  100. Li Y, Yang Y, Ma S, Li L, Wang Y, Liu X, Xie R (2019) Theoretical model construction and structure optimization of electromagnetic flow transducer based on neural network. Journal of Intelligent & Fuzzy Systems 37(3):3489–3498

    Article  Google Scholar 

  101. Yuan C, Bowler A, Davies JG, Hewakandamby B, Dimitrakis G (2019) Optimized mode selection in electromagnetic sensors for real time, continuous and in-situ monitoring of water cut in multi-phase flow systems. Sens Actuators, B Chem 298:126886

    Article  Google Scholar 

  102. Huiqin J, Hangchao W, Ruirong D (1894) Jianyu Q (2021) Research on multi-phase flow measurement system based on electromagnetic correlation method. In Journal of Physics: Conference Series IOP Publishing 1:012048

    Google Scholar 

  103. Gao K, Cui Z, Xia Z, Wang H (2021) Phase sensitive detector for multielectrode electromagnetic flowmeter. In 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC): 1–5

  104. Arif MZ, Lehtikangas O, Seppänen A, Kolehmainen V, Vauhkonen M (2021) Joint reconstruction of conductivity and velocity in two-phase flows using electromagnetic flow tomography and electrical tomography: A simulation study. IEEE Trans Instrum Meas 70:1–17

    Article  Google Scholar 

  105. Jin N, Yu C, Han Y, Yang Q, Ren Y, Zhai L (2020) The performance characteristics of electromagnetic flowmeter in vertical low-velocity oil-water two-phase flow. IEEE Sens J 21(1):464–475

    Article  Google Scholar 

  106. Cui Z, Gao K, Xia Z, Li S, Wang H (2022) Sensitivity formulation for electromagnetic flow tomography considering the conductivity distribution. Measurement 188:110510

    Article  Google Scholar 

  107. Li X, Sun L (2021) Research on the Influence of Non-Conductor on the Weight Function of Electromagnetic Flowmeter. In Journal of Physics: Conference Series 1952(3): 032081. IOP Publishing

  108. Tang Z, Jin N, Yang Q, Bai L, Zhai L (2022) Measurement of Oil–Gas–Water Flows in Vertical Pipes Using Electromagnetic Flowmeter and Dual-Conductance Sensors. IEEE Trans Instrum Meas 71:1–12

    Article  Google Scholar 

  109. Li X, Li H (2021) Research on a Three-phase Flow Electromagnetic Measurement Method. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 692(2):022009

  110. Zhou F, Yang Q, Lin K (2022) Evaluation index and performance structure optimization of magnetic field uniformity of complex multi-phase flow electromagnetic flowmeter. Measurement and Control 55(1–2):62–71

    Article  Google Scholar 

  111. Mohindru P (2022) Development of liquid level measurement technology: A review. Flow Meas Instrum 102295

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions in this work.

Corresponding author

Correspondence to Pankaj Mohindru.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All the authors involved have agreed to participate in this submitted article.

Consent to publish

All the authors involved in this manuscript give full consent for publication of this submitted article.

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohindru, P. Recent advancements in volumetric flow meter for industrial application. Heat Mass Transfer 59, 2149–2166 (2023). https://doi.org/10.1007/s00231-023-03413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-023-03413-4

Navigation