Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T17:14:14.304Z Has data issue: false hasContentIssue false

Bakakinite, Ca2V2O7, a new mineral from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia

Published online by Cambridge University Press:  07 June 2023

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Sergey N. Britvin
Affiliation:
Dept. of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Anna G. Turchkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Maria A. Nazarova
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
*
Corresponding author: Igor V. Pekov; Email: igorpekov@mail.ru

Abstract

The new mineral bakakinite, ideally Ca2V2O7, was found in the high-temperature (not lower than 500°C) exhalations of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with anhydrite, svabite, pliniusite, schäferite, berzeliite, diopside, hematite, powellite, baryte, fluorapatite, calciojohillerite, ludwigite, magnesioferrite, anorthite, titanite and esseneite. Bakakinite forms flattened crystals up to 30 × 5 μm, typically distorted. The mineral is transparent, colourless or pale yellow, with strong vitreous lustre. Electron microprobe analysis gave (wt.%): CaO 37.04, SrO 0.26, SiO2 0.16, P2O5 1.48, V2O5 49.47, As2O5 10.85, SO3 0.35, total 99.61. The empirical formula calculated on the basis of 7 O apfu is (Ca1.99Sr0.01)Σ2.00(V1.64As0.28P0.06Si0.01S0.01)Σ2.00O7. The Dcalc is 3.463 g cm–3. Bakakinite is triclinic, P$\bar{1}$, unit-cell parameters are: a = 6.64(2), b = 6.92(2), c = 7.01(2) Å, α = 86.59(7), β = 63.77(7), γ = 83.47(6)°, V = 287.0(5) Å3 and Z = 2. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 4.647(27)(111, 0$\bar{1}$1), 3.138(76)(002), 3.103(100)(120, 121), 3.027(20)(021), 2.960(81)(200), 2.158(19)(031, 302), 1.791(16)(320), 1.682(16)(114) and 1.584(17)(1$\bar{3}$3, 403). Bakakinite is a natural analogue of synthetic Ca2V2O7. The mineral is named in honour of the outstanding Russian crystallographer and crystal chemist Vladimir Vasilievich Bakakin (born 1933).

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R. Kampf

References

Bariand, P., Chantret, F., Pouget, R. and Rimsky, A. (1963) Une nouvelle éspèce minérale: la chervetite, pyrovanadate de plomb Pb2V2O7. Bulletin de la Société Française de Minéralogie et de Cristallographie, 86, 117120 [in French].10.3406/bulmi.1963.5629CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Brugger, J. and Berlepsch, P. (1996) Description and crystal structure of fianelite, Mn2V(V,As)O7⋅2H2O, a new mineral from Fianel, Val Ferrera, Graubünden, Switzerland. American Mineralogist, 81, 12701276.CrossRefGoogle Scholar
Chong, S., Aksenov, S.M., Dal Bo, F., Perry, S.N., Dimakopoulou, F. and Burns, P.C. (2019) Framework polymorphism and modular crystal structures of uranyl vanadates of divalent cations: synthesis and characterization of M(UO2)(V2O7) (M = Ca, Sr) and Sr3(UO2)(V2O7)2. Zeitschrift für Anorganische und Allgemeine Chemie, 645, 981987.CrossRefGoogle Scholar
Griffith, W.P. and Wickins, T.D. (1966) Raman studies on species in aqueous solutions. Part I. The vanadates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, 10871090.CrossRefGoogle Scholar
Hardcastle, F.D. and Wachs, I.E. (1991) Determination of vanadium-oxygen bond distances and orders by Raman spectroscopy. The Journal of Physical Chemistry, 95, 50315041.CrossRefGoogle Scholar
Hughes, J.M. and Birnie, R.W. (1980) Ziesite, β-Cu2V2O7, a new copper vanadate and fumarole temperature indicator. American Mineralogist, 65, 11461149.Google Scholar
Hughes, J.M. and Brown, M.A. (1989) The crystal structure of ziesite, β-Cu2V2O7, a thortveitite-type structure with a non-linear X-O-X inter-tetrahedral bond. Neues Jahrbuch für Mineralogie, Monatshefte, 1989, 4147.Google Scholar
Kampf, A.R. and Steele, I.M. (2008) Martyite, a new mineral species related to volborthite: description and crystal structure. The Canadian Mineralogist, 46, 687692.10.3749/canmin.46.3.687CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Marty, J., Hughes, J.M. (2017) Mesaite, CaMn2+5(V2O7)3⋅12H2O, a new vanadate mineral from the Packrat mine, near Gateway, Mesa County, Colorado, USA. Mineralogical Magazine, 81, 319327.10.1180/minmag.2016.080.095CrossRefGoogle Scholar
Kampf, A.R., Hughes, J.M., Nash, B.P. and Smith, J.B. (2022) Donowensite, Ca(H2O)3Fe3+2(V2O7)2, and mikehowardite, Fe3+4(V5+O4)4(H2O)2⋅H2O, two new vanadium minerals from the Wilson Springs Vanadium Mine, Wilson Springs, Arkansas, U.S.A. The Canadian Mineralogist, 60, 543554.10.3749/canmin.210015CrossRefGoogle Scholar
Kasatkin, A.V., Plášil, J., Pekov, I.V., Belakovskiy, D.I., Nestola, F., Čejka, J., Vigasina, M.F., Zorzi, F. and Thorne, B. (2015) Karpenkoite, Co3(V2O7)(OH)2⋅2H2O, a cobalt analogue of martyite from the Little Eva mine, Grand County, Utah, USA. Journal of Geosciences, 60, 251257.10.3190/jgeosci.199CrossRefGoogle Scholar
Kashaev, A.A. and Bakakin, V.V. (1968) Crystal structure of volborthite Cu3(OH)2V2O7⋅2H2O. Doklady Akademii Nauk SSSR, 181, 967969 [in Russian].Google Scholar
Krivovichev, S.V., Filatov, S.K., Cherepansky, P.N., Armbuster, T. and Pankratova, O.Y. (2005) Crystal structure of γ-Cu2V2O7 and its comparison to blossite (α-Cu2V2O7) and ziesite (β-Cu2V2O7). The Canadian Mineralogist, 43, 671677.10.2113/gscanmin.43.2.671CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York.Google Scholar
Pasero, M. (2023) The New IMA List of Minerals. International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA–CNMNC). http://cnmnc.main.jp/.Google Scholar
Pekov, I.V., Siidra, O.I., Chukanov, N.V., Yapaskurt, V.O., Britvin, S.N., Krivovichev, S.V., Schüller, W. and Ternes, B. (2015) Engelhauptite, KCu3(V2O7)(OH)2Cl, a new mineral species from Eifel, Germany. Mineralogy and Petrology, 109, 705711.10.1007/s00710-015-0400-8CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.10.1127/ejm/2018/0030-2718CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Yu. (2020) Kainotropite, Cu4Fe3+O2(V2O7)(VO4), a new mineral with a complex vanadate anion from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia. The Canadian Mineralogist, 58, 155165.10.3749/canmin.1900073CrossRefGoogle Scholar
Pekov, I.V., Agakhanov, A.A., Koshlyakova, N.N., Zubkova, N.V., Yapaskurt, V.O., Britvin, S.N., Vigasina, M.F., Turchkova, A.G. and Nazarova, M.A. (2022a) Bakakinite, IMA 2022-046. CNMNC Newsletter 69; Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.115.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Krzątała, A., Belakovskiy, D.I., Galuskina, I.O., Galuskin, E.V., Britvin, S.N., Sidorov, E.G., Vapnik, Y. and Pushcharovsky, D.Yu. (2022b) Pliniusite, Ca5(VO4)3F, a new apatite-group mineral and the novel natural ternary solid-solution system pliniusite–svabite–fluorapatite. American Mineralogist, 107, 16261634.10.2138/am-2022-8100CrossRefGoogle Scholar
Pertlik, F. (1980) Die Kristallstruktur von Ca2As2O7. Monatshefte für Chemie, 111, 399405.10.1007/BF00903235CrossRefGoogle Scholar
Robinson, P.D., Hughes, J.M. and Malinconico, M.L. (1987) Blossite, α-Cu2+2V5+2O7, a new fumarolic sublimate from Izalco volcano, El Salvador. American Mineralogist, 72, 397400.Google Scholar
Russu, S. (2008) High-Throughput Synthesis and Characterization of Vanadium Mixed Metal Oxide Pigments Using Synchrotron Radiation. PhD Thesis, University of Southampton, UK, 146 pp.Google Scholar
Shannon, R.D. and Calvo, C. (1973) Refinement of the crystal structure of synthetic chervetite, Pb2V2O7. Canadian Journal of Chemistry, 51, 7076.CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101119.CrossRefGoogle Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758864.CrossRefGoogle Scholar
Tong, Y.-P., Luo, G.-T., Jin, Z. and Lin, Y.-W. (2011) Synthesis, structure and theoretical investigations of an alkaline earth vanadate oxide compound (Ca4V4O14): electronic, optical and chemical bond properties. Australian Journal of Chemistry, 64, 973977.10.1071/CH10476CrossRefGoogle Scholar
Trunov, V.K., Velikodnyi, Yu.A., Murasheva, E.V. and Zhuravlev, V.D. (1983) The crystal structure of calcium pyrovanadate. Doklady Akademii Nauk SSSR, 270, 886887 [in Russian].Google Scholar
Vladimirova, V.A., Siidra, O.I., Ugolkov, V.L., Bubnova, R.S. (2021) Refinement of the crystal structure and features of the thermal behavior of volborthite Cu3V2O7(OH)2⋅2H2O from the Tyuya-Muyun Deposit, Kyrgyzstan. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 150, 115133 [in Russian].Google Scholar