Skip to main content

Advertisement

Log in

CD146 deficiency promotes inflammatory type 2 responses in pulmonary cryptococcosis

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Cryptococcus neoformans (C. neoformans) is an important opportunistic fungal pathogen for pulmonary cryptococcosis. Previously, we demonstrated that CD146 mediated the adhesion of C. neoformans to the airway epithelium. CD146 is more than an adhesion molecule. In the present study, we aimed to explore the roles of CD146 in the inflammatory response in pulmonary cryptococcosis. CD146 was decreased in lung tissues from patients with pulmonary cryptococcosis. Similarly, C. neoformans reduced pulmonary CD146 expression in mice following intratracheal inoculation. To explore the pathological roles of CD146 reduction in pulmonary cryptococcosis, CD146 knockout (KO) mice were inoculated with C. neoformans via intratracheal instillation. CD146 deficiency aggravated C. neoformans infection, as evidenced by a shortened survival time and increased fungal burdens in the lung. Inflammatory type 2 cytokines (IL-4, IL-5, and TNF-α) and alternatively activated macrophages were increased in the pulmonary tissues of CD146 KO-infected mice. CD146 is expressed in immune cells (macrophages, etc.) and nonimmune cells, i.e., epithelial cells and endothelial cells. Bone marrow chimeric mice were established and infected with C. neoformans. CD146 deficiency in immune cells but not in nonimmune cells increased fungal burdens in the lung. Mechanistically, upon C. neoformans challenge, CD146 KO macrophages produced more neutrophil chemokine KC and inflammatory cytokine TNF-α. Meanwhile, CD146 KO macrophages decreased the fungicidity and production of reactive oxygen species. Collectively, C. neoformans infection decreased CD146 in pulmonary tissues, leading to inflammatory type 2 responses, while CD146 deficiency worsened pulmonary cryptococcosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Setianingrum F, Rautemaa-Richardson R, Denning DW (2019) Pulmonary cryptococcosis: a review of pathobiology and clinical aspects. Med Mycol 57(2):133–150

    Article  PubMed  Google Scholar 

  2. Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB et al (2013) Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio 4(3):e00264-e313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deerhake ME, Reyes EY, Xu-Vanpala S, Shinohara ML (2021) Single-cell transcriptional heterogeneity of neutrophils during acute pulmonary Cryptococcus neoformans infection. Front Immunol 12:670574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun D, Zhang M, Liu G, Wu H, Zhu X, Zhou H et al (2016) Real-time imaging of interactions of neutrophils with Cryptococcus neoformans demonstrates a crucial role of complement C5a–C5aR signaling. Infect Immun 84(1):216–229

    Article  CAS  PubMed  Google Scholar 

  5. Mednick AJ, Feldmesser M, Rivera J, Casadevall A (2003) Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis. Eur J Immunol 33(6):1744–1753

    Article  CAS  PubMed  Google Scholar 

  6. Sun Z, Ji N, Jiang J, Tao Y, Zhang E, Yang X et al (2020) Fine particulate matter (PM2.5) promotes CD146 expression in alveolar epithelial cells and Cryptococcus neoformans pulmonary infection. Front Microbiol 11:525976

    Article  PubMed  Google Scholar 

  7. Wang Z, Yan X (2013) CD146, a multifunctional molecule beyond adhesion. Cancer Lett 330(2):150–162

    Article  CAS  PubMed  Google Scholar 

  8. Bardin N, Blot-Chabaud M, Despoix N, Kebir A, Harhouri K, Arsanto JP et al (2009) CD146 and its soluble form regulate monocyte transendothelial migration. Arterioscler Thromb Vasc Biol 29(5):746–753

    Article  CAS  PubMed  Google Scholar 

  9. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F et al (2017) Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res 27(3):352–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blin MG, Bachelier R, Fallague K, Moussouni K, Aurrand-Lions M, Fernandez S et al (2019) CD146 deficiency promotes plaque formation in a mouse model of atherosclerosis by enhancing RANTES secretion and leukocyte recruitment. J Mol Cell Cardiol 130:76–87

    Article  CAS  PubMed  Google Scholar 

  11. Duan H, Jing L, Xiang J, Ju C, Wu Z, Liu J et al (2022) CD146 associates with Gp130 to control a macrophage pro-inflammatory program that regulates the metabolic response to obesity. Adv Sci (Weinh) 9(13):e2103719

    Article  PubMed  Google Scholar 

  12. Zhang B, Li L, Feng L, Zhang Y, Zeng X, Feng J et al (2009) Elevated levels of soluble and neutrophil CD146 in active systemic vasculitis. Lab Med 40(6):351–356

    Article  Google Scholar 

  13. Sun Z, Ji N, Jiang J, Tao Y, Zhang E, Yang X et al (2020) Fine particulate matter (PM(2).(5)) promotes CD146 expression in alveolar epithelial cells and Cryptococcus neoformans pulmonary infection. Front Microbiol 11:525976

    Article  PubMed  Google Scholar 

  14. Surawut S, Ondee T, Taratummarat S, Palaga T, Pisitkun P, Chindamporn A et al (2017) The role of macrophages in the susceptibility of Fc gamma receptor IIb deficient mice to Cryptococcus neoformans. Sci Rep 7:40006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flaczyk A, Duerr CU, Shourian M, Lafferty EI, Fritz JH, Qureshi ST (2013) IL-33 signaling regulates innate and adaptive immunity to Cryptococcus neoformans. J Immunol 191(5):2503–2513

    Article  CAS  PubMed  Google Scholar 

  16. Benonisson H, Altıntaş I, Sluijter M, Verploegen S, Labrijn AF, Schuurhuis DH et al (2019) CD3-bispecific antibody therapy turns solid tumors into inflammatory sites but does not install protective memory. Mol Cancer Ther 18(2):312–322

    Article  CAS  PubMed  Google Scholar 

  17. Dai X, Mao C, Lan X, Chen H, Li M, Bai J et al (2017) Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol 17(1):177

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Yuan Q, Zhang X, Chen Z, Jia X, Wang M et al (2023) Fine particulate matter (PM2.5) induces inhibitory memory alveolar macrophages through the AhR/IL-33 pathway. Cell Immunol 386:104694

    Article  CAS  PubMed  Google Scholar 

  19. Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB et al (2011) Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. Am J Pathol 178(1):198–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang HR, Li F, Han H, Xu X, Li N, Wang S et al (2018) Dectin-3 recognizes glucuronoxylomannan of Cryptococcus neoformans serotype AD and Cryptococcus gattii serotype B to initiate host defense against cryptococcosis. Front Immunol 9:1781

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakamura Y, Sato K, Yamamoto H, Matsumura K, Matsumoto I, Nomura T et al (2015) Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans. Infect Immun 83(2):671–681

    Article  PubMed  PubMed Central  Google Scholar 

  22. Piehler D, Stenzel W, Grahnert A, Held J, Richter L, Kohler G et al (2011) Eosinophils contribute to IL-4 production and shape the T-helper cytokine profile and inflammatory response in pulmonary cryptococcosis. Am J Pathol 179(2):733–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lloyd CM, Snelgrove RJ (2018) Type 2 immunity: expanding our view. Sci Immunol 3(25):eaat1604

    Article  PubMed  Google Scholar 

  24. Zhao X, Guo Y, Jiang C, Chang Q, Zhang S, Luo T et al (2017) JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat Med 23(3):337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishizuka S, Yokoyama R, Sato K, Shiroma R, Nakahira A, Yamamoto H et al (2020) Effect of CARD9 deficiency on neutrophil-mediated host defense against pulmonary infection with Streptococcus pneumoniae. Infect Immun 89(1):e00305-e320

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guillot L, Carroll SF, Homer R, Qureshi ST (2008) Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection. Infect Immun 76(10):4745–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leopold Wager CM, Wormley FL Jr (2014) Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol 7(5):1023–1035

    Article  CAS  PubMed  Google Scholar 

  28. Qian YN, Luo YT, Duan HX, Feng LQ, Bi Q, Wang YJ et al (2014) Adhesion molecule CD146 and its soluble form correlate well with carotid atherosclerosis and plaque instability. CNS Neurosci Ther 20(5):438–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kechichian TB, Shea J, Del Poeta M (2007) Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice. Infect Immun 75(10):4792–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nelson BN, Daugherty CS, Sharp RR, Booth JL, Patel VI, Metcalf JP et al (2022) Protective interaction of human phagocytic APC subsets with Cryptococcus neoformans induces genes associated with metabolism and antigen presentation. Front Immunol 13:1054477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coelho C, Souza AC, Derengowski Lda S, de Leon-Rodriguez C, Wang B, Leon-Rivera R et al (2015) Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans. J Immunol 194(5):2345–2357

    Article  CAS  PubMed  Google Scholar 

  32. de Kruijff IE, Timmermans AM, den Bakker MA, Trapman-Jansen A, Foekens R, Meijer-Van Gelder ME et al (2018) The prevalence of CD146 expression in breast cancer subtypes and its relation to outcome. Cancers (Basel) 10(5):134

    Article  PubMed  Google Scholar 

  33. Liao J, Fu Q, Chen W, Li J, Zhang W, Zhang H et al (2020) Plasma soluble CD146 as a potential diagnostic marker of acute rejection in kidney transplantation. Front Med (Lausanne) 7:531999

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ito T, Tamura N, Okuda S, Tada K, Matsushita M, Yamaji K et al (2017) Elevated serum levels of soluble CD146 in patients with systemic sclerosis. Clin Rheumatol 36(1):119–124

    Article  PubMed  Google Scholar 

  35. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z et al (2020) Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Front Immunol 11:1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Misharin AV, Morales-Nebreda L, Mutlu GM, Budinger GR, Perlman H (2013) Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 49(4):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rose CE Jr, Lannigan JA, Kim P, Lee JJ, Fu SM, Sung SS (2010) Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell Mol Immunol 7(5):361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (82171738, 81671563), the Jiangsu Provincial Commission of Health and Family Planning (Q2017001), and the Shenzhen Science and Technology Program (JCYJ20210324115607021).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, XY, MH, YB, NJ, and MZ; formal analysis, ZW, WL, JJ, and MZ; funding acquisition, YB and MZ; investigation, WL and HH; methodology, ZW, WL, HH, JJ, CY, XZ, QY, and XY; project administration, MZ; resources, HH and YB; supervision, MZ; validation, ZW; writing—original draft, ZW; writing—review and editing, YB, NJ, and MZ.

Corresponding authors

Correspondence to Yanming Bao, Ningfei Ji or Mingshun Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Edited by Christian Bogdan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

430_2023_780_MOESM1_ESM.tif

Flow cytometry gating strategy for cells in BALF. Flow cytometry shows the gating strategy of total cells (R1), leukocytes (R2), neutrophils (R3 gate), and macrophages (R4) from BALF (TIF 2170 KB)

430_2023_780_MOESM2_ESM.tif

CD146 deficiency promoted pulmonary inflammation and M2 polarization after challenge with heat-killed (HK) H99 cells. WT and CD146-/- mice were intratracheally infected with 1*104 HK C. neoformans H99 and sacrificed 2 weeks post infection. (A–B) KC and TNF-α in the lung homogenates were measured with ELISA. (C–E) iNOS and Arg1 in the lung were determined with qPCR. *, p<0.05; **, p<0.01; ***, P<0.001; ****, p<0.0001; ns, not significant (TIF 2170 KB)

430_2023_780_MOESM3_ESM.tif

The efficiency of differentiation of BMDMs. The purity of macrophages from cultured BMDMs was gated by CD45+F4/80+ (TIF 1100 KB)

430_2023_780_MOESM4_ESM.tif

Comparative study of some molecules in naïve WT vs CD146 mice. (A-E) IL-4, IL-5, IL-13, IFN-γ, and TNF-α in the lung tissues were measured by qPCR. (F-G) iNOS and Arg1 in lung tissue were measured by qPCR. *, ns, not significant (TIF 1858 KB)

430_2023_780_MOESM5_ESM.tif

Control stains of mouse lung tissue samples. Immunohistochemistry was performed without anti-CD146 and with secondary antibody alone in the tissue samples from mice without or with C. neoformans infection for 3 weeks. Scale bar, 50 μm (TIF 8072 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, W., Hu, H. et al. CD146 deficiency promotes inflammatory type 2 responses in pulmonary cryptococcosis. Med Microbiol Immunol 212, 391–405 (2023). https://doi.org/10.1007/s00430-023-00780-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-023-00780-x

Keywords

Navigation