Skip to main content
Log in

Missing pieces of the pituitary puzzle: participation of extra-adenohypophyseal placode-lineage cells in the adult pituitary gland

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The pituitary gland is a major endocrine tissue composing of two distinct entities, the adenohypophysis (anterior pituitary, cranial placode origin) and the neurohypophysis (posterior pituitary, neural ectoderm origin), and plays important roles in maintaining vital homeostasis. This tissue is maintained by a slow, consistent cell-renewal system of adult stem/progenitor cells. Recent accumulating evidence shows that neural crest-, head mesenchyme-, and endoderm lineage cells invade during pituitary development and contribute to the maintenance of the adult pituitary gland. Based on these novel observations, this article discusses whether these lineage cells are involved in pituitary organogenesis, maintenance, regeneration, dysplasia, or tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al Madhoun A, Ali H, Alkandari S, Atizado V, Akhter N, Al-Mulla F, Atari M (2016) Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton’s jelly mesenchymal stem cells. Stem Cell Res Ther 7:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Allaerts W, Vankelecom H (2005) History and perspectives of pituitary folliculo-stellate cell research. Eur J Endocrinol 153:1–12

    Article  CAS  PubMed  Google Scholar 

  • Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13:433–445

    Article  CAS  PubMed  Google Scholar 

  • Aquino JB, Hjerling-Leffler J, Koltzenburg M, Edlund T, Villar MJ, Ernfors P (2006) In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol 198:438–449

    Article  CAS  PubMed  Google Scholar 

  • Atwell WJ (1918) The development of the hypophysis cerebri of the rabbit. Am J Anat 24:271–337

    Article  Google Scholar 

  • Betters E, Liu Y, Kjaeldgaard A, Sundstrom E, Garcia-Castro MI (2010) Analysis of early human neural crest development. Dev Biol 344:578–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerrizuela S, Vega-Lopez GA, Aybar MJ (2020) The role of teratogens in neural crest development. Birth Defects Res 112:584–632

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H (2009) Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27:1182–1195

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Kato T, Higuchi M, Yoshida S, Yako H, Kanno N, Kato Y (2013) Coxsackievirus and adenovirus receptor-positive cells compose the putative stem/progenitor cell niches in the marginal cell layer and parenchyma of the rat anterior pituitary. Cell Tissue Res 354:823–836

    Article  CAS  PubMed  Google Scholar 

  • Choi E, Kraus MR-C, Lemaire LA, Yoshimoto M, Vemula S, Potter LA, Manduchi E, Stoeckert CJ, Jr., Grapin-Botton A, Magnuson MA (2012) Dual lineage-specific expression of Sox17 during mouse embryogenesis. Stem Cells 30

  • Couly GF, Le Douarin NM (1985) Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439

    Article  CAS  PubMed  Google Scholar 

  • Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214

    Article  CAS  PubMed  Google Scholar 

  • Daikoku S, Kawano H, Abe K, Yoshinaga K (1981) Topographical appearance of adenohypophysial cells with special reference to the development of the portal system. Arch Histol Jpn 44:103–116

    Article  CAS  PubMed  Google Scholar 

  • Dasen JS, Barbera J-PM, Herman TS, O’Connell S, Olson L, Ju B, Tollkuhn J, Baek SH, Rose DW, Rosenfeld MG (2001) Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev 15:3193–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SW, Mortensen AH, Keisler JL, Zacharias AL, Gage PJ, Yamamura K, Camper SA (2016) beta-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis. BMC Dev Biol 16:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Debbache J, Parfejevs V, Sommer L (2018) Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview. Genesis 56:e23105

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Valle L, Khalili K (2021) Induction of brain tumors by the archetype strain of human neurotropic JCPyV in a transgenic mouse model. Viruses 13:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Devnath S, Inoue K (2008) An insight to pituitary folliculo-stellate cells. J Neuroendocrinol 20:687–691

    Article  CAS  PubMed  Google Scholar 

  • Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165

    Article  CAS  PubMed  Google Scholar 

  • Etchevers H, Vincent C, Couly G (2001a) Neural crest and pituitary development. Hypothalamic-pituitary Development Genetic and Clinical Aspects 4:13–29

  • Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001b) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Fabian P, Tseng K-C, Smeeton J, Lancman JJ, Dong PDS, Cerny R, Crump JG (2020) Lineage analysis reveals an endodermal contribution to the vertebrate pituitary. Science 370:463–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci USA 105:2907–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara K, Tsukada T, Horiguchi K, Fujiwara Y, Takemoto K, Nio-Kobayashi J, Ohno N, Inoue K (2020) Aldolase C is a novel molecular marker for folliculo-stellate cells in rodent pituitary. Cell Tissue Res 381:273–284

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Hoshikawa S, Ueno T, Hirata M, Saito T, Ikeda T, Kawaguchi H, Nakamura K, Tanaka S, Ogata T (2014) SOX10 transactivates S100B to suppress Schwann cell proliferation and to promote myelination. PLoS ONE 9:e115400

    Article  PubMed  PubMed Central  Google Scholar 

  • Furlan A, Adameyko I (2018) Schwann cell precursor: a neural crest cell in disguise? Dev Biol 444:S25–S35

    Article  CAS  PubMed  Google Scholar 

  • Gammil SL, Weichert R (1973) Common origin for all neuroendocrine tumors. Acta Radiol Ther Phys Biol 12:321–326

    Article  Google Scholar 

  • Gleiberman AS, Fedtsova NG, Rosenfeld MG (1999) Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Dev Biol 213:340–353

    Article  CAS  PubMed  Google Scholar 

  • Gremeaux L, Fu Q, Chen J, Vankelecom H (2012) Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland. Stem Cells Dev 21:801–813

    Article  CAS  PubMed  Google Scholar 

  • Hall BK (2000) The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol Dev 2:3–5

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Yako H, Yoshida S, Fujiwara K, Tsukada T, Kanno N, Ueharu H, Nishihara H, Kato T, Yashiro T, Kato Y (2016) S100β-positive cells of mesenchymal origin reside in the anterior lobe of the embryonic pituitary gland. PLoS ONE 11:e0163981

    Article  PubMed  PubMed Central  Google Scholar 

  • Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K (2007) Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 148:1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Jacob C (2015) Transcriptional control of neural crest specification into peripheral glia. Glia 63:1883–1896

    Article  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen KR, Mirsky R (2019) Schwann cell precursors; Multipotent glial cells in embryonic nerves. Front Mol Neurosci 12

  • Johnson MD, Fan X, Bourne P, Walters D (2007) Neuronal differentiation and expression of neural epitopes in pituitary adenomas. J Histochem Cytochem 55:1265–1271

    Article  CAS  PubMed  Google Scholar 

  • Kasai T, Suga H, Sakakibara M, Ozone C, Matsumoto R, Kano M, Mitsumoto K, Ogawa K, Kodani Y, Nagasaki H, Inoshita N, Sugiyama M, Onoue T, Tsunekawa T, Ito Y, Takagi H, Hagiwara D, Iwama S, Goto M, Banno R, Takahashi J, Arima H (2020) Hypothalamic contribution to pituitary functions is recapitulated in vitro using 3D-cultured human ips cells. Cell Rep 30(18–24):e15

    Google Scholar 

  • Kato Y, Yoshida S, Kato T (2021) New insights into the role and origin of pituitary S100β-positive cells. Cell Tissue Res 386:227–237

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Kikuyama S (1998) Morphogenesis of the hypothalamus and hypophysis: their association, dissociation and reassociation before and after “Rathke.” Arch Histol Cytol 61:189–198

    Article  CAS  PubMed  Google Scholar 

  • Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT (2009) Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30:790–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kioussi C, Carriere C, Rosenfeld MG (1999) A model for the development of the hypothalamic-pituitary axis: transcribing the hypophysis. Mech Dev 81:23–35

    Article  CAS  PubMed  Google Scholar 

  • Kouki T, Imai H, Aoto K, Eto K, Shioda S, Kawamura K, Kikuyama S (2001) Developmental origin of the rat adenohypophysis prior to the formation of Rathke’s pouch. Development 128:959–963

    Article  CAS  PubMed  Google Scholar 

  • Laporte E, Hermans F, De Vriendt S, Vennekens A, Lambrechts D, Nys C, Cox B, Vankelecom H (2022) Decoding the activated stem cell phenotype of the neonatally maturing pituitary. Elife 11:e75742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Douarin NM, Creuzet S, Couly G, Dupin E (2004) Neural crest cell plasticity and its limits. Development 131:4637–4650

    Article  PubMed  Google Scholar 

  • Iida H, Furukawa Y, Teramoto M, Suzuki H, Takemoto T, Uchikawa M, Kondoh H (2020) Sox2 gene regulation via the D1 enhancer in embryonic neural tube and neural crest by the combined action of SOX2 and ZIC2. Genes Cells 25:242–256

  • Motohashi T, Kitagawa D, Watanabe N, Wakaoka T, Kunisada T (2014) Neural crest-derived cells sustain their multipotency even after entry into their target tissues. Dev Dyn 243:368–380

    Article  CAS  PubMed  Google Scholar 

  • Nitzan E, Krispin S, Pfaltzgraff ER, Klar A, Labosky PA, Kalcheim C (2013) A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 140:2269–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novello M, Gessi M, Doglietto F, Anile C, Lauriola L, Coli A (2017) Characteristics of ganglion cells in pituitary gangliocytomas. Neuropathology 37:64–68

    Article  PubMed  Google Scholar 

  • Paratore C, Goerich DE, Suter U, Wegner M, Sommer L (2001) Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128:3949–3961

    Article  CAS  PubMed  Google Scholar 

  • Parfejevs V, Antunes AT, Sommer L (2018) Injury and stress responses of adult neural crest-derived cells. Dev Biol 444:S356–S365

    Article  CAS  PubMed  Google Scholar 

  • Perera SN, Kerosuo L (2021) On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. Stem Cells 39:7–25

    Article  PubMed  Google Scholar 

  • Pierret C, Spears K, Maruniak JA, Kirk MD (2006) Neural crest as the source of adult stem cells. Stem Cells Dev 15:286–291

    Article  CAS  PubMed  Google Scholar 

  • Rizzoti K (2015) Genetic regulation of murine pituitary development. J Mol Endocrinol 54:R55–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roose H, Cox B, Boretto M, Gysemans C, Vennekens A, Vankelecom H (2017) Major depletion of SOX2(+) stem cells in the adult pituitary is not restored which does not affect hormonal cell homeostasis and remodelling. Sci Rep 7:16940

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakata K, Fujimori K, Komaki S, Furuta T, Sugita Y, Ashida K, Nomura M, Morioka M (2020) Pituitary gangliocytoma producing TSH and TRH: A review of “Gangliocytomas of the sellar region.” J Clin Endocrinol Metab 105:3109–3121

    Article  PubMed  PubMed Central  Google Scholar 

  • Salz L, Driskell RR (2017) The Sox2: GFP+/- knock-in mouse model does not faithfully recapitulate Sox2 expression in skin. Exp Dermatol 26:1146–1148

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Arrones L, Ferrán JL, Hidalgo-Sanchez M, Puelles L (2015) Origin and early development of the chicken adenohypophysis. Front Neuroanat 9

  • Schlosser G (2006) Induction and specification of cranial placodes. Dev Biol 294:303–351

    Article  CAS  PubMed  Google Scholar 

  • Schlosser G (2008) Do vertebrate neural crest and cranial placodes have a common evolutionary origin? BioEssays 30:659–672

    Article  CAS  PubMed  Google Scholar 

  • Seabrook AJ, Harris JE, Velosa SB, Kim E, McInerney-Leo AM, Dwight T, Hockings JI, Hockings NG, Kirk J, Leo PJ, Love AJ, Luxford C, Marshall M, Mete O, Pennisi DJ, Brown MA, Gill AJ, Hockings GI, Clifton-Bligh RJ, Duncan EL (2020) Multiple endocrine tumors associated with germline MAX mutations: Multiple endocrine neoplasia type 5? J Clin Endocrinol Metab 106:e1163–e1182

    Article  Google Scholar 

  • Solovieva T, Bronner M (2021) Reprint of: Schwann cell precursors: Where they come from and where they go. Cells Dev 168:203729

    Article  CAS  PubMed  Google Scholar 

  • Song K, Wang Y, Sassoon D (1992) Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 360:477–481

    Article  CAS  PubMed  Google Scholar 

  • Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG (1996) Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384:327–333

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Yoshizaki K, Kobayashi T, Osumi N (2013) Neural crest-derived horizontal basal cells as tissue stem cells in the adult olfactory epithelium. Neurosci Res 75:112–120

    Article  PubMed  Google Scholar 

  • Takagi H, Nagashima K, Inoue M, Sakata I, Sakai T (2008) Detailed analysis of formation of chicken pituitary primordium in early embryonic development. Cell Tissue Res 333:417–426

    Article  PubMed  Google Scholar 

  • Trouillas J, Jaffrain-Rea M-L, Vasiljevic A, Raverot G, Roncaroli F, Villa C (2020) How to classify pituitary neuroendocrine tumors (PitNET)s in 2020. Cancers 12:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueharu H, Yoshida S, Kanno N, Horiguchi K, Nishimura N, Kato T, Kato Y (2018) SOX10-positive cells emerge in the rat pituitary gland during late embryogenesis and start to express S100beta. Cell Tissue Res 372:77–90

    Article  CAS  PubMed  Google Scholar 

  • Ueharu H, Yoshida S, Kikkawa T, Kanno N, Higuchi M, Kato T, Osumi N, Kato Y (2017) Gene tracing analysis reveals the contribution of neural crest-derived cells in pituitary development. J Anat 230:373–380

    Article  CAS  PubMed  Google Scholar 

  • Vankelecom H (2007) Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol 18:559–570

  • Vankelecom H, Chen J (2014) Pituitary stem cells: Where do we stand? Mol Cell Endocrinol 385:2–17

    Article  CAS  PubMed  Google Scholar 

  • Vankelecom H, Gremeaux L (2010) Stem cells in the pituitary gland: a burgeoning field. Gen Comp Endocrinol 166:478–488

    Article  CAS  PubMed  Google Scholar 

  • Vega-Lopez GA, Cerrizuela S, Tribulo C, Aybar MJ (2018) Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 444(Suppl 1):S110–S143

    Article  CAS  PubMed  Google Scholar 

  • Widera D, Heimann P, Zander C, Imielski Y, Heidbreder M, Heilemann M, Kaltschmidt C, Kaltschmidt B (2011) Schwann cells can be reprogrammed to multipotency by culture. Stem Cells Dev 20:2053–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Kato T, Chen M, Higuchi M, Ueharu H, Nishimura N, Kato Y (2015) Localization of juxtacrine factor ephrin-B2 in pituitary stem/progenitor cell niches throughout life. Cell Tissue Res 359:755–766

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Kato T, Kato Y (2016a) EMT Involved in migration of stem/progenitor cells for pituitary development and regeneration. J Clin Med 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Kato T, Susa T, Cai L-Y, Nakayama M, Kato Y (2009) PROP1 coexists with SOX2 and induces PIT1-commitment cells. Biochem Biophys Res Commun 385:11–15

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Kato T, Yako H, Susa T, Cai LY, Osuna M, Inoue K, Kato Y (2011) Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary. J Neuroendocrinol 23:933–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Nishimura N, Ueharu H, Kanno N, Higuchi M, Horiguchi K, Kato T, Kato Y (2016b) Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. Stem Cell Res 17:318–329

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Nishimura N, Yurino H, Kobayashi M, Horiguchi K, Yano K, Hashimoto S, Kato T, Kato Y (2018) Differentiation capacities of PS-clusters, adult pituitary stem/progenitor cell clusters located in the parenchymal-niche, of the rat anterior lobe. PLoS ONE 13:e0196029

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, Newgreen D (2014) The neural crest: a versatile organ system. Birth Defects Res C Embryo Today 102:275–298

    Article  PubMed  Google Scholar 

  • Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express our deep gratitude to everyone who belonged to the Laboratory of Molecular Biology and Gene Regulation, Department of Life Sciences, School of Agriculture, Meiji University, and to Ms. Kyoko Tomizawa and many collaborators of other research institutions for the research results that provide the background of this paper. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Kato.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, Y., Yoshida, S. & Kato, T. Missing pieces of the pituitary puzzle: participation of extra-adenohypophyseal placode-lineage cells in the adult pituitary gland. Cell Tissue Res 394, 487–496 (2023). https://doi.org/10.1007/s00441-023-03829-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03829-8

Keywords

Navigation