Skip to main content
Log in

CeOnanocubes-based electrochemical sensor for the selective and simultaneous determination of dopamine in the presence of uric acid and ascorbic acid

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this work, CeO2 nanocubes prepared by a simple co-precipitation method were employed for the determination of dopamine (DA) using an electrochemical method. The prepared material was characterized using morphological analysis like Transmission Electron Microscope (TEM) and the chemical structure was elucidated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman and Fourier Transform Infrared (FTIR) spectroscopy respectively. From the TEM analysis, the growth of CeO2 nanocubes into nanorods was observed and particle size was determined to be 10 nm. The presence of cubic crystalline structure was confirmed through XRD and the structural analysis was confirmed using FTIR and Raman spectroscopy. The oxidation state of the elements was confirmed through XPS analysis. For the electrochemical redox reaction of DA, the CeO2-modified glassy carbon electrode (GCE) showed excellent catalytic activity towards the DA oxidation compared to bare GCE. The detection of DA using differential pulse voltammetry (DPV) showed a limit of detection (LOD) of 3.2 µM and a linear range of 10-300 µM, respectively. Similarly, for UA and AA, the detection limit and linear range were found to be 4.3 µM and 10 µM-700 µM for UA; 14 µM and 10 µM-250 µM, respectively for AA. The repeatability and reproducibility of the sensor were studied and the veracity of the sensor towards the estimation of DA in blood serum samples was analyzed. The admirable performance of the present biosensor could be potentially useful for biomedical applications.

Graphical abstract

CeOnanocubes were prepared by a facile chemical method. The enhanced catalytic activity was exhibited by CeOnanocubes towards the electro-oxidation of dopamine and excellent selectivity in the presence of uric acid and ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ranjbar-Slamloo Y and Fazlali Z 2020 Dopamine and noradrenaline in the brain; overlapping or dissociate functions? Front Mol. Neurosci. 12 1

    Article  Google Scholar 

  2. Penedo M A, Rivera-Baltanás T, Pérez-Rodríguez D, Allen J, Borrajo A, Alonso-crespo, Fernández-Pereira, C, Nieto-Araujo M, Ramos-García S, Barreiro-Villar C, Caruncho H J, Olivares J M and Agís-Balboa R C 2021 The role of dopamine receptors in lymphocytes and their changes in schizophrenia Brain Behav. Immun. Health 12 100199

  3. Zucca F A, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, et al. 2017 Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease Prog. Neurobiol. 155 96

    Article  CAS  PubMed  Google Scholar 

  4. Weinstein J J, Chohan M O, Slifstein M, Kegeles L S, Moore H and Abi-Dargham A 2017 Pathway-specific dopamine abnormalities in schizophrenia Biol. Psych. 81 31

    Article  CAS  Google Scholar 

  5. Dalley J W and Roiser J P 2012 Dopamine, serotonin and impulsivity Neuroscience 215 42

    Article  CAS  PubMed  Google Scholar 

  6. Juárez Olguín H, Calderón Guzmán D, Hernández García E and Barragán Mejía G 2016 The role of dopamine and its dysfunction as a consequence of oxidative stress Oxid. Med. Cell Longev. 2016 9730467

    Article  PubMed  Google Scholar 

  7. Britto-Júnior J, Antunes N J, Campos R, Rafael S, Mauro M, Gustavo D F, Fernanda M, Manoel O M, Maria E A, De Nucci and Gilberto 2021 Determination of dopamine, noradrenaline, and adrenaline in Krebs–Henseleit solution by liquid chromatography coupled with tandem mass spectrometry and measurement of their basal release from Chelonoidis carbonaria aortae in vitro Biomed. Chromatogr. 35 2

  8. Roychoudhury A, Francis K A, Patel J, Sandeep K B and Suddhasatwa 2020 A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin RSC Adv. 10 25487

  9. Wei M X, Wei N, Pang L F, Pang Lan F G, Xiao F and Wang H 2021 Determination of dopamine in human serum based on green-emitting fluorescence carbon dots Opt. Mater. 118 111257

    Article  CAS  Google Scholar 

  10. Noipa T and Ngeontae W 2018 Thioglycolic acid-capped CdS quantum dots modified with Co2+ as a fluorescent sensor for dopamine Bull. Mater. Sci. 41 109

    Article  Google Scholar 

  11. Wang S, Guo P, Ma G, Wei J, Wang Z, Cui L, et al. 2020 Three-dimensional hierarchical mesoporous carbon for regenerative electrochemical dopamine sensor Electrochim. Acta 360 13

    Article  Google Scholar 

  12. Mohsen B, Mazaheri S and Motaghedifard M H 2022 Ultrasounds-assisted electrosynthesis of sponge-like MnO2 nanostructures: Design a novel device for nanomolar sensing of dopamine Russ. J. Electrochem. 58 21

    Article  Google Scholar 

  13. Chandra S, Arora K and Bahadur D 2012 Impedimetric biosensor based on magnetic nanoparticles for electrochemical detection of dopamine Mater. Sci. Eng. B 177 1531

    Article  CAS  Google Scholar 

  14. Mphuthi N G, Adekunle A S, Fayemi O E, Olasunkanmi L O and Ebenso E E 2017 Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of Dopamine Sci. Rep. 7 43181

    Article  PubMed  PubMed Central  Google Scholar 

  15. Keerthi M, Boopathy G, Chen S M and Lou B S 2019 A core-shell molybdenum nanoparticles entrapped f-MWCNTs hybrid nanostructured material based non-enzymatic biosensor for electrochemical detection of dopamine neurotransmitter in biological samples Sci. Rep. 9 1

    Article  CAS  Google Scholar 

  16. Shu Y, Lu Q, Yuan F, Tao Q, Jin D, Yao H, et al. 2020 Stretchable electrochemical biosensing platform based on Ni-MOF composite/Au nanoparticle-coated carbon nanotubes for real-time monitoring of dopamine released from living cells ACS Appl. Mater. Interfaces 12 49480

    Article  CAS  PubMed  Google Scholar 

  17. Cai Z, Ye Y, Wan X, Wan X, Liu J, Yang S, et al. 2019 Morphology–dependent electrochemical sensing properties of iron oxide–graphene oxide nanohybrids for dopamine and uric acid Nanomaterials 9 1

    Article  Google Scholar 

  18. Sivasubramanian R and Biji P 2016 Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine Mater. Sci. Eng. B 210 10

    Article  CAS  Google Scholar 

  19. Aparna T K and Sivasubramanian R 2019 FeTiO3 nanohexagons based electrochemical sensor for the detection of dopamine in presence of uric acid Mater. Chem. Phys. 233 319

    Article  CAS  Google Scholar 

  20. Anshori I, Kepakisan K A A, NuravianaRizalputri L, Rona Althof R, Nugroho A E, Siburian R and Handayani M 2022 Facile synthesis of graphene oxide/Fe3O4 nanocomposite for electrochemical sensing on determination of dopamine Nanocomposites 81 55

    Google Scholar 

  21. Grabchenko M V, Mikheeva N N, Mamontov G V, Salaev M A, Liotta L F and Vodyankina 2018 Ag/CeO2 composites for catalytic abatement of CO, Soot and VOCs Catalysts 8 285

  22. Miranda Cruz A R, Assaf E M, Gomes J F and Assaf J M 2019 New insights about the effect of the synthesis method on the CuO/CeO2 redox properties and catalytic performance towards CO-PROX reaction for fuel cell applications J. Environ. Manage. 242 272

    Article  CAS  PubMed  Google Scholar 

  23. Padmanathan N and Selladurai S 2014 Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes RSC Adv. 4 6527

    Article  CAS  Google Scholar 

  24. Liu H and Liu H 2016 Preparing micro/nano dumbbell-shaped CeO2 for high performance electrode materials J. Alloys Compd. 681 342

    Article  CAS  Google Scholar 

  25. Lu C, Yin Z, Sun C, Chen C and Wang F 2021 Photocatalytic reduction of nitroaromatics into anilines using CeO2-TiO2 nanocomposite Mol. Catal. 513 11175

    Google Scholar 

  26. Mohammad A, Khan M E, Cho M H and Yoon T 2021 Adsorption promoted visible-light-induced photocatalytic degradation of antibiotic tetracycline by tin oxide/cerium oxide nanocomposite Appl. Surf. Sci. 565 150337

    Article  CAS  Google Scholar 

  27. Arya A, Gangwar A, Singh S K and Bhargava K 2020 Polyethylene glycol functionalized cerium oxide nanoparticle confer protection against UV- induced oxidative damage in skin: evidences for a new class of UV filter Nano Express 1 010038

    Article  Google Scholar 

  28. Itoh T, Izu N, Tsuruta A, Akamatsu T, Shin W, Kamihoriuchi K, et al. 2021 Effect of Pt electrodes in cerium oxide semiconductor-type oxygen sensors evaluated using alternating current Sens. Actuat. B Chem. 345 130396

    Article  CAS  Google Scholar 

  29. Hernández-Alonso M D, Hungría A B, Martínez-Arias A, Fernández-García M, Coronado J M, Conesa J C and Soria J 2004 EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation Appl. Catal. B: Environ. 50 167

    Article  Google Scholar 

  30. Morales M I, Rico C M, Hernandez-Viezcas J A, Fernández-García M, Coronado J M, Conesa J C and Soria J 2013 Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil J. Agric. Food. Chem. 61 6224

    Article  CAS  PubMed  Google Scholar 

  31. Hussain S, Kodavanti P P, Marshburn J D, Janoshazi A, Marinakos S M, George M, et al. 2016 Decreased uptake and enhanced mitochondrial protection underlie reduced toxicity of nanoceria in human monocyte-derived macrophages J. Biomed. Nanotechnol. 12 2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pautler R, Kelly E Y, Huang P J J, Cao J, Liu B and Liu J 2013 Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching ACS Appl. Mater. Interfaces 5 6820

    Article  CAS  PubMed  Google Scholar 

  33. Adebayo O A, Akinloye O and Adaramoye O A 2020 Cerium oxide nanoparticles attenuate oxidative stress and inflammation in the liver of diethylnitrosamine-treated Mice Biol. Trace Elem. Res. 193 214

    Article  CAS  PubMed  Google Scholar 

  34. Moskvin M, Marková I, Malínská H, Miklánková D, Hüttl M, Oliyarnyk O, et al. 2020 Cerium oxide-decorated γ-Fe2O3 nanoparticles: design, synthesis and in vivo effects on parameters of oxidative stress Front. Chem. 8 1

    Article  Google Scholar 

  35. Yuao Wu and Ta Hang T 2021 Different approaches to synthesise cerium oxide nanoparticles and their corresponding physical characteristics, ROS scavenging and anti- inflammatory capabilities J. Mater. Chem. B 9 7291

    Article  Google Scholar 

  36. Chauhan D, Sri S, Kumar R, Panda A K and Solanki P R 2021 Evaluation of size, shape, and charge effect on the biological interaction and cellular uptake of cerium oxide nanostructures Nanotechnology 32 355101

    Article  CAS  Google Scholar 

  37. Caputo F, Mameli M, Sienkiewicz A, Licoccia S, Stellacci F, Ghibelli L and Traversa E 2017 A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity Sci. Rep. 7 4636

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang Y, Mao Z, Huang W, Liu L, Li J, Li J and Wu Q 2016 Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets Sci. Rep. 6 35344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Konduru N V, Molina R M, Swami A, Damiani F, Pyrgiotakis G, Lin P, et al. 2017 Protein corona: implications for nanoparticle interactions with pulmonary cells Part. Fibre. Toxicol. 14 42

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mauro M, Crosera M, Monai M, Montini T, Fornasiero P, Bovenzi M, et al. 2019 Cerium oxide nanoparticles absorption through intact and damaged human skin Molecules 24 3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fallatah A, Almomtan M and Padalkar S 2019 Cerium oxide based glucose biosensors: influence of morphology and underlying substrate on biosensor performance ACS Sustain. Chem. Eng. 7 8083

    Article  CAS  Google Scholar 

  42. Sukanya R, Ramki S, Chen S M and Karthik R 2020 Ultrasound treated cerium oxide/tin oxide (CeO2/SnO2) nanocatalyst: a feasible approach and enhanced electrode material for sensing of anti-inflammatory drug 5-aminosalicylic acid in biological samples Anal. Chim. Acta 1096 76

    Article  CAS  PubMed  Google Scholar 

  43. Anh T T N, Tam L T, Van Thu V, Le A T, Hung Vuong P and Tam P D 2020 Nano-rods structured cerium oxide platform for cholesterol biosensor J. Inorg. Organomet. Polym. Mater. 30 3886

    Article  CAS  Google Scholar 

  44. Zhang J W and Zhang X 2020 Electrode material fabricated by loading cerium oxide nanoparticles on reduced graphene oxide and its application in electrochemical sensor for tryptophan J. Alloys Compd. 842 155934

    Article  CAS  Google Scholar 

  45. Baalousha M, Ju-Nam Y, Cole P A, Gaiser B, Fernandes T F, Hriljac J A, et al. 2012 Characterization of cerium oxide nanoparticles-part 1: size measurements Environ. Toxicol. Chem. 31 983

    Article  CAS  PubMed  Google Scholar 

  46. Zhang F, Chan S W, Spanier J E, Apak E, Jin Q, Robinson R D and Herman I P 2002 Cerium oxide nanoparticles: size-selective formation and structure analysis Appl. Phys. Lett. 80 127

    Article  CAS  Google Scholar 

  47. Zhou Y 2020 Controllable design, synthesis and characterization of nanostructured rare earth metal oxides Phys. Sci. Rev. 5 3

    Google Scholar 

  48. Jayakumar G, Irudayaraj A A and Raj A D 2017 Particle size effect on the properties of cerium oxide (CeO2) manoparticles synthesized by hydrothermal method Mech. Mater. Sci. Eng. J. 9 2

    Google Scholar 

  49. Hartati Y W, Topkaya S N, Gaffar S, Bahti H H and Cetin A E 2021 Synthesis and characterization of nanoceria for electrochemical sensing applications RSC Adv. 11 16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goharshadi E K, Samiee S and Nancarrow P 2011 Fabrication of cerium oxide nanoparticles: characterization and optical properties J. Colloid. Interface Sci. 356 473

    Article  CAS  PubMed  Google Scholar 

  51. Xu B, Zhang Q, Yuan S, Zhang M and Ohno T 2015 Morphology control and characterization of broom-like porous CeO2 Chem. Eng. J. 260 126

    Article  CAS  Google Scholar 

  52. Jayakumar G, Albert I A and Dhayal R A 2019 A comprehensive investigation on the properties of nanostructured cerium oxide Opt. Quantum Electron. 51 312

    Article  Google Scholar 

  53. Pandit B, Sankapal B R and Koinkar P M 2019 Novel chemical route for CeO2/MWCNTs composite towards highly bendable solid-state supercapacitor device Sci. Rep. 9 1

    Article  CAS  Google Scholar 

  54. Bortamuly R, Konwar G, Boruah P K, Das M R, Mahanta D and Saikia P 2020 CeO2-PANI-HCL and CeO2-PANI-PTSA composites: synthesis, characterization, and utilization as supercapacitor electrode materials Ionics 26 5747

    Article  CAS  Google Scholar 

  55. Aparna T K and Sivasubramanian R 2018 NiFe2O4 nanoparticles-decorated activated carbon nanocomposite based electrochemical sensor for selective detection of dopamine in presence of uric acid and ascorbic acid J. Chem. Sci. 130 10

    Article  Google Scholar 

  56. Soni R, Palit K, Soni M, Kumar R and Sharma S K 2020 Highly sensitive electrochemical sensing of neurotransmitter dopamine from scalable UV irradiation-based nitrogen-doped reduced graphene oxide-modified electrode Bull. Mater. Sci. 43 175

    Article  CAS  Google Scholar 

  57. Aparna T K, Sivasubramanian R and Dar M A 2018 One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid J. Alloys Compd. 741 1130

    Article  CAS  Google Scholar 

  58. Figueredo F, Jesús González-Pabón M and Cortón E 2018 Low cost layer by layer construction of CNT/Chitosan flexible paper-based electrodes: a versatile electrochemical platform for point of care and point of need testing Electroanalysis 30 497

    Article  CAS  Google Scholar 

  59. Zhao D, Yu G, Tian K and Xu C 2016 A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy Biosens. Bioelectron. 8 2 119

    Article  Google Scholar 

  60. Priyatharshni S, Divagar M, Viswanathan C, Mangalaraj D and Ponpandian N 2016 Electrochemical simultaneous detection of dopamine, ascorbic acid and uric acid using LaMnO3 nanostructures J. Electrochem. Soc. 163 B460

    Article  CAS  Google Scholar 

  61. Fan Y, Lu H T, Liu J H, Yang C P, Jing Q S, Zhang Y X, et al. 2011 Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite Colloids Surf. B: Biointerfaces 83 78

    Article  CAS  PubMed  Google Scholar 

  62. Kaur B, Pandiyan T, Satpati B and Srivastava R 2013 Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode Colloids Surf. B: Biointerfaces 111 97

    Article  CAS  PubMed  Google Scholar 

  63. Vinoth S, Ramaraj R and Pandikumar A 2020 Facile synthesis of calcium stannate incorporated graphitic carbon nitride nanohybrid materials: a sensitive electrochemical sensor for determining dopamine Mater. Chem. Phys. 245 122743

    Article  CAS  Google Scholar 

  64. Li S M, Yang S Y, Wang Y S, Lien C H, Tien H W, Hsiao S T, et al. 2013 Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid Carbon 5 9418

    Google Scholar 

  65. Lin K C, Tsai T H and Chen S M 2010 Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film Biosens. Bioelectron. 26 608

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the facilities and support provided by the management of PSG Sons and Charities, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Sivasubramanian.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 433 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tharani, D.S., Sivasubramanian, R. CeOnanocubes-based electrochemical sensor for the selective and simultaneous determination of dopamine in the presence of uric acid and ascorbic acid. J Chem Sci 135, 93 (2023). https://doi.org/10.1007/s12039-023-02210-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02210-0

Keywords

Navigation