Skip to main content

Advertisement

Log in

Numerical study of the melting process of spherical phase change material with variable thermal conductivity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper addresses the melting of phase change solid sphere, which motivates researchers to develop new thermal energy storage (TES) systems techniques. Phase change materials can store or release large amounts of heat in short intervals of time, thus improving the thermal performance of cooling and heating systems in buildings and regulate the temperature of PV systems, batteries and other electronic components. We have considered a convective spherical Stefan problem with thermal conductivity as a function of time and temperature. The heat balance integral method (HBIM) is used to find the problem’s solution numerically. The temperature profile is approximated by using n degree polynomial. The influence of governing parameters on the location of melting front and temperature profile is discussed thoroughly. The parameters depict that transition from solid to liquid phase becomes fast for higher values of Stefan number while the transition rate slows down for larger values of Peclet number. The melting rate increases from 20% to 80% when Stefan number rises from 0.1 to 1.0 at a particular time. Moreover, a comparative study of the proposed model with some existing models is being done. It is observed that moving melting front for the assumed problem undergoes a fast melting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This manuscript has no associated data.

Abbreviations

r :

Radial distance (m)

\(R_0\) :

Radius of sphere (m)

t :

Time (s)

R(t):

Moving melting front position

\(\rho\) :

Density \(({\text{Kg} \text{ m }}^{-3})\)

c :

Specific heat \(({\text{J} \text{ kg }}^{-1}{\text{ K }}^{-1})\)

k :

Thermal conductivity

h :

Latent heat (\({\text{J} \text{ kg }}^{-1}\))

\(T_{\rm m}\) :

Melting temperature (K)

T :

Temperature (K)

Pe:

Peclet number

\(\delta\) :

Thermal diffusivity \(({\text{m}}^2{\text{ s }}^{-1})\)

Ste:

Stefan number

\(\theta\) :

Transformed temperature

\(k_0\) :

Reference thermal conductivity \(({\text{W} \text{ m }}^{-1}{\text{ K }}^{-1})\)

u :

Velocity \(({\text{ ms }}^{-1})\)

References

  1. R S Saif, M Zaman and M Ayaz Commun. Theor. Phys. 74 015801 (2021)

    Article  ADS  Google Scholar 

  2. R S Saif and T Muhammad Waves Random Complex Media 1–21 (2023) https://doi.org/10.1080/17455030.2023.2193848

  3. T Singla, B Kumar and S Sharma Int. J. Mod. Phys. B. 2350111 (2022) https://doi.org/10.1142/S0217979223501114

  4. T Singla, S Sharma and B Kumar B Proc. Inst. Mech. 09544089221145930 (2023) https://doi.org/10.1177/09544089221145930

  5. Z Asghar, R S Saif and A Z Ghaffari Proc. Inst. Mech. Eng. Part C 237 1088 (2023)

    Article  CAS  Google Scholar 

  6. T Singla, S Sharma and B Kumar Int. J. Mod. Phys. B. (2023) https://doi.org/10.1142/S0217979224500930

  7. M Hafeez, R Sajjad and Hashim Adv. Mech. Eng. 13 16878140211021288 (2021)

    Article  CAS  Google Scholar 

  8. R S Saif, M Haneef, M Nawaz and T Muhammad Chem. Phys. Lett. 813 140293 (2023)

    Article  Google Scholar 

  9. Y Gao and X Meng J. Energy Storage 62 106913 (2023)

    Article  Google Scholar 

  10. J M Hill One-dimensional Stefan problems: an introduction Longman Sc & Tech. (1987)

  11. S C Gupta The classical Stefan problem: basic concepts, modelling and analysis with quasi-analytical solutions and methods Elsevier (2017)

  12. J Crank Free and moving boundary problems Oxford University Press (1984)

  13. R Kaur, A Chandra and S Sharma Int. J. Mod. Phys. B 36 2250130 (2022)

    Article  ADS  CAS  Google Scholar 

  14. S Cho and J Sunderland J Heat Transf. 96 214 (1974)

    Article  CAS  Google Scholar 

  15. D Oliver and J Sunderland Int. J. Heat Mass Transf. 30 2657 (1987)

    Article  ADS  Google Scholar 

  16. P Tritscher and P Broadbridge Int. J. Heat Mass Transf. 37 2113 (1994)

    Article  CAS  Google Scholar 

  17. A C Briozzo, M F Natale and D A Tarzia Nonlinear Anal. Theory Methods Appl. 67 1989 (2007)

    Article  Google Scholar 

  18. A C Briozzo and M F Natale J. Appl. Anal. 21 89 (2015)

    Article  MathSciNet  Google Scholar 

  19. M Hussein and D Lesnic Int. Commun. Heat Mass Transf. 53 154 (2014)

    Article  Google Scholar 

  20. M Huntul and D Lesnic Int. Commun. Heat Mass Transf. 85 147 (2017)

    Article  CAS  Google Scholar 

  21. A Kumar and A K Singh J. King Saud Univ. Sci. 32 97 (2020)

    Article  Google Scholar 

  22. V Chaurasiya, R K Chaudhary, M M Awad and J Singh Eur. Phys. J. Plus 137 714 (2022)

    Article  CAS  Google Scholar 

  23. V Chaurasiya, R Kumar Chaudhary, A Wakif and J Singh Waves Random Complex Media (2022) https://doi.org/10.1080/17455030.2022.2092913

  24. V Chaurasiya, A Wakif, N A Shah and J Singh Int. Commun. Heat Mass Transf. 138 106312 (2022)

    Article  Google Scholar 

  25. S A Kassabek and D Suragan J. Comput. Appl. Math. 421 114854 (2023)

    Article  Google Scholar 

  26. M C Casabán, R Company and L Jódar Math. Comput. Simul. 205 878 (2023)

    Article  Google Scholar 

  27. S D Roscani, K Ryszewska and L Venturato SIAM J. Math. Anal. 54 5489 (2022)

    Article  MathSciNet  Google Scholar 

  28. M Parhizi and A Jain Int. J. Therm. Sci. 172 107262 (2022)

    Article  CAS  Google Scholar 

  29. F Mebarek-Oudina and I Chabani Energies 16 1066 (2023)

    Article  CAS  Google Scholar 

  30. S Gourari, F Mebarek-Oudina, O D Makinde and M Rabhi Defect Diffus. Forum, Trans Tech Publications Ltd. 409 39 (2021)

    Article  Google Scholar 

  31. R Kunwer and S S Bhurat Mater. Today Proc. 50 1690 (2022)

    Article  CAS  Google Scholar 

  32. H Ribera, T G Myers and M M MacDevette Appl. Math. Comput. 354 216 (2019)

    Article  MathSciNet  Google Scholar 

  33. A N Ceretani, N N Salva and D A Tarzia Nonlinear Anal. Real World Appl. 40 243 (2018)

    Article  MathSciNet  Google Scholar 

  34. J Bollati and A C Briozzo Int. J. Non Linear Mech. 134 103732 (2021)

    Article  ADS  Google Scholar 

  35. A Kumar Appl. Math. Comput. 386 125490 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by SERB-POWER SPG/2021/000591 funded by Science and Engineering Research Board (SERB) and by the DST-FIST (Govt. of India) for the grant SR/FIST/MS-1/2017/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna Sharma.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, T., Kumar, B. & Sharma, S. Numerical study of the melting process of spherical phase change material with variable thermal conductivity. Indian J Phys 98, 1355–1363 (2024). https://doi.org/10.1007/s12648-023-02886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02886-7

Keywords

Navigation