Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 31, 2023

[RuCl2(dppf)(PN)]/Pd-cocatalyzed three-component synthesis of 2-pyridinyl-6-arylquinolines

  • Hao Wang , Pengtao Bai , Shuo Wen , Jingjing Wei , Heng Song and Chen Xu EMAIL logo

Abstract

A new complex [RuCl2(dppf)(PN)] 1 (dppf = 1,1′-bis(diphenylphosphino) ferrocene; PN = (2-diphenylphosphino)benzenamine) has been synthesized and characterized. Its structure was determined by single-crystal X-ray diffraction. An efficient 1/Pd salt-cocatalyzed three-component oxidation/cyclization/Suzuki reaction for the synthesis of 2-pyridinyl-6-arylquinolines from 2-acetylpyridine, (2-amino-5-bromophenyl)methanol, and arylboronic acids has been developed.


Corresponding author: Chen Xu, School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: The Natural Science Foundation of Jiangsu Province (No. 182300410230) and China Postdoctoral Science Foundation (2022M711401).

  5. Data availability: Not applicable.

References

1. Kumar, S., Bawa, S., Gupta, H. Mini-Rev. Med. Chem. 2009, 9, 1648–1654; https://doi.org/10.2174/138955709791012247.Search in Google Scholar PubMed

2. Matada, B. S., Pattanashettar, R., Yernale, N. G. Bioorg. Med. Chem. 2021, 32, 115973 (25 pages); https://doi.org/10.1016/j.bmc.2020.115973.Search in Google Scholar PubMed

3. Xu, C., Lin, Q., Shan, C., Han, X., Wang, H., Wang, H., Zhang, W., Chen, Z., Guo, C., Xie, Y., Yu, X., Song, B., Song, H., Wojtas, L., Li, X. Angew. Chem. Int. Ed. 2022, 61, e202203099 (10 pages); https://doi.org/10.1002/anie.202203099.Search in Google Scholar PubMed

4. Lou, X., Tian, Y., Wang, Z. Z. Naturforsch. 2022, 77b, 673–679; https://doi.org/10.1515/znb-2022-0092.Search in Google Scholar

5. Ajani, O. O., Iyaye, K. T., Ademosun, O. T. RSC Adv. 2022, 12, 18594–18614; https://doi.org/10.1039/d2ra02896d.Search in Google Scholar PubMed PubMed Central

6. Lehr, M., Paschelke, T., Trumpf, E., Vogt, A.-M., Näther, C., Sönnichsen, F. D., McConnell, A. J. Angew. Chem. Int. Ed. 2020, 59, 19344–19351; https://doi.org/10.1002/anie.202008439.Search in Google Scholar PubMed PubMed Central

7. Shang, X.-F., Morris-Natschke, S. L., Liu, Y.-Q., Guo, X., Xu, X.-S., Goto, M., Li, J.-C., Yang, G.-Z., Lee, K.-H. Med. Res. Rev. 2018, 38, 775–828; https://doi.org/10.1002/med.21466.Search in Google Scholar PubMed PubMed Central

8. Xu, C., Li, H.-M., Yuan, X.-E., Xiao, Z.-Q., Wang, Z.-Q., Fu, W.-J., Ji, B.-M., Hao, X.-Q., Song, M.-P. Org. Biomol. Chem. 2014, 12, 3114–3122; https://doi.org/10.1039/c4ob00231h.Search in Google Scholar PubMed

9. Batista, V. F., Pinto, D. C. G. A., Silva, A. M. S. ACS Sustain. Chem. Eng. 2016, 4, 4064–4078; https://doi.org/10.1021/acssuschemeng.6b01010.Search in Google Scholar

10. Harry, N. A., Ujwaldev, S. M., Anilkumar, G. Org. Biomol. Chem. 2020, 18, 9775–9790; https://doi.org/10.1039/d0ob02000a.Search in Google Scholar PubMed

11. Weyesa, A., Mulugeta, E. RSC Adv. 2020, 10, 20784–20793; https://doi.org/10.1039/d0ra03763j.Search in Google Scholar PubMed PubMed Central

12. Cho, C. S., Kim, B. T., Kim, T.-J., Shim, S. C. Chem. Commun. 2001, 2576–2577; https://doi.org/10.1039/b109245f.Search in Google Scholar

13. Martínez, R., Ramón, D. J., Yus, M. Tetrahedron 2006, 62, 8988–9001.10.1016/j.tet.2006.07.013Search in Google Scholar

14. Xu, C., Hao, X.-Q., Xiao, Z.-Q., Wang, Z.-Q., Yuan, X.-E., Fu, W.-J., Ji, B.-M., Song, M.-P. J. Org. Chem. 2013, 78, 8730–8738; https://doi.org/10.1021/jo401421b.Search in Google Scholar PubMed

15. Hu, W., Zhang, Y., Zhu, H., Ye, D., Wang, D. Green Chem. 2019, 21, 5345–5351; https://doi.org/10.1039/c9gc02086a.Search in Google Scholar

16. Dhiya, A. K., Monga, A., Sharma, A. Org. Chem. Front. 2021, 8, 1657–1676; https://doi.org/10.1039/d0qo01387k.Search in Google Scholar

17. Cao, F., Mao, A., Yang, B., Ge, C., Wang, D. New J. Chem. 2021, 45, 6768–6772; https://doi.org/10.1039/d0nj05767c.Search in Google Scholar

18. Wang, R., Fan, H., Zhao, W., Li, F. Org. Lett. 2016, 18, 3558–3561; https://doi.org/10.1021/acs.orglett.6b01518.Search in Google Scholar PubMed

19. Xu, C., Li, H.-M., Xiao, Z.-Q., Wang, Z.-Q., Tang, S.-F., Ji, B.-M., Hao, X.-Q., Song, M.-P. Dalton Trans. 2014, 43, 10235–10247; https://doi.org/10.1039/c4dt00833b.Search in Google Scholar PubMed

20. Murahashi, S.-I. Ruthenium in Organic Synthesis; Wiley-VCH: Weinheim, 2004.10.1002/3527603832Search in Google Scholar

21. Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A. F., Ikariya, T., Noyori, R. Angew. Chem. Int. Ed. 1998, 37, 1703–1707; https://doi.org/10.1002/(sici)1521-3773(19980703)37:12<1703::aid-anie1703>3.0.co;2-i.10.1002/(SICI)1521-3773(19980703)37:12<1703::AID-ANIE1703>3.0.CO;2-ISearch in Google Scholar

22. Hamilton, R. J., Leong, C. G., Bigam, G., Miskolzie, M., Bergens, S. H. J. Am. Chem. Soc. 2005, 127, 4152–4153; https://doi.org/10.1021/ja043339k.Search in Google Scholar

23. Wang, H., Wen, J., Zhang, X. Chem. Rev. 2021, 121, 7530–7567; https://doi.org/10.1021/acs.chemrev.1c00075.Search in Google Scholar

24. Baratta, W., Bossi, G., Putignano, E., Rigo, P. Chem. Eur. J. 2011, 17, 3474–3481; https://doi.org/10.1002/chem.201003022.Search in Google Scholar

25. Hey, D. A., Reich, R. M., Baratta, W., Kühn, F. E. Coord. Chem. Rev. 2018, 374, 114–132; https://doi.org/10.1016/j.ccr.2018.06.005.Search in Google Scholar

26. Zhu, J., Bienaym, H., Eds. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.10.1002/3527605118Search in Google Scholar

27. Xu, C., Xiao, Z.-Q., Li, H.-M., Han, X., Wang, Z.-Q., Fu, W.-J., Ji, B.-M., Hao, X.-Q., Song, M.-P. Eur. J. Org Chem. 2015, 7427–7432; https://doi.org/10.1002/ejoc.201501169.Search in Google Scholar

28. Lied, F., Žugelj, H. B., Kress, S., Štefane, B., Glorius, F., Lautens, M. ACS Catal. 2017, 7, 1378–1382; https://doi.org/10.1021/acscatal.6b03209.Search in Google Scholar

29. Gelman, D., Jiang, L., Buchwald, S. L. Org. Lett. 2003, 5, 2315–2318; https://doi.org/10.1021/ol0346640.Search in Google Scholar

30. Sheldrick, G. M. Shelxs-97, Program for the Solution of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

31. Sheldrick, G. M. Shelxl-97, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

32. Amason, E. K., Rajabimoghadam, K., Baughman, N. N., Ghareeb, C. R., Bourgeois, S. K., Keuk, C., Manacsa, G., Popp, B. V., Garcia-Bosch, I., Ferrence, G. M., Joslin, E. E. Organometallics 2022, 41, 686–697; https://doi.org/10.1021/acs.organomet.1c00444.Search in Google Scholar

33. Ge, S., Zhang, J., Zhao, J., Ulhaq, I., Ma, G., McDonald, R. J. Organomet. Chem. 2019, 879, 7–14; https://doi.org/10.1016/j.jorganchem.2018.07.038.Search in Google Scholar

34. Zhu, Z.-H., Li, Y., Wang, Y.-B., Lan, Z.-G., Zhu, X., Hao, X.-Q., Song, M.-P. Organometallics 2019, 38, 2156–2166; https://doi.org/10.1021/acs.organomet.9b00146.Search in Google Scholar

35. Cotton, F. A., Wilkinson, G. Advanced Inorganic Chemistry, 5th ed.; John Wiley & Sons: New York, 1988; p. 1299.Search in Google Scholar

36. Ballico, M., Zuccaccia, D., Figliolia, R., Baratta, W. Organometallics 2020, 39, 3180–3193; https://doi.org/10.1021/acs.organomet.0c00361.Search in Google Scholar

37. Fang, X., Li, B., Zheng, J., Wang, X., Zhu, H., Yuan, Y. Dalton Trans. 2019, 48, 2290–2294; https://doi.org/10.1039/c8dt04957b.Search in Google Scholar PubMed

38. Kuznetsov, V. F., Yap, G. P. A., Alper, H. Organometallics 2001, 20, 1300–1309; https://doi.org/10.1021/om000894w.Search in Google Scholar

39. Baldino, S., Giboulot, S., Lovison, D., Nedden, H. G., Pöthig, A., Zanotti-Gerosa, A., Zuccaccia, D., Ballico, M., Baratta, W. Organometallics 2021, 40, 1086–1103; https://doi.org/10.1021/acs.organomet.1c00059.Search in Google Scholar PubMed PubMed Central

40. Ma, G., McDonald, R., Ferguson, M., Cavell, R. G., Patrick, B. O., James, B. R., Hu, T. Q. Organometallics 2007, 26, 846–854; https://doi.org/10.1021/om060987z.Search in Google Scholar

41. Zhao, Q., Liu, S., Shi, M., Wang, C., Yu, M., Li, L., Li, F., Yi, T., Huang, C. Inorg. Chem. 2006, 45, 6152–6160; https://doi.org/10.1021/ic052034j.Search in Google Scholar PubMed

42. Xu, C., Li, H.-M., Wang, Z.-Q., Han, X., Fu, W.-J., Hao, X.-Q. Z. Anorg. Allg. Chem. 2020, 646, 317–322; https://doi.org/10.1002/zaac.201900340.Search in Google Scholar

43. Zhu, X., Liu, B., Cui, P., Kilina, S., Sun, W. Inorg. Chem. 2020, 59, 17096–17108; https://doi.org/10.1021/acs.inorgchem.0c02366.Search in Google Scholar PubMed

Received: 2023-03-22
Accepted: 2023-07-30
Published Online: 2023-08-31
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0018/html
Scroll to top button