Skip to main content

Advertisement

Log in

Production and Purification of Cysteine-Rich Leptospiral Virulence-Modifying Proteins with or Without mCherry Fusion

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Recombinant fluorescent fusion proteins are fundamental to advancing many aspects of protein science. Such proteins are typically used to enable the visualization of functional proteins in experimental systems, particularly cell biology. An important problem in biotechnology is the production of functional, soluble proteins. Here we report the use of mCherry-fusions of soluble, cysteine-rich, Leptospira-secreted exotoxins in the PF07598 gene family, the so-called virulence modifying (VM) proteins. The mCherry fusion proteins facilitated the visual detection of pink colonies of the VM proteins (LA3490 and LA1402) and following them through lysis and sequential chromatography steps. CD-spectroscopy analysis confirmed the stability and robustness of the mCherry-fusion protein, with a structure comparable to AlphaFold structural predictions. LA0591, a unique member of the PF07598 gene family that lacks N-terminal ricin B-like domains, was produced without mCherry tag that strengthens the recombinant protein production protocol without fusion protein as well. The current study provides the approaches for the synthesis of 50–125 kDa soluble, cysteine-rich, high-quality fast protein liquid chromatography (FPLC)-purified protein, with and without a mCherry tag. The use of mCherry-fusion proteins enables a streamlined, efficient process of protein production and qualitative and quantitative downstream analytical and functional studies. Approaches for troubleshooting and optimization were evaluated to overcome difficulties in recombinant protein expression and purification, demonstrating biotechnology utility in accelerating recombinant protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96(24):13703–13708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaur J, Kumar A, Kaur J (2018) Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements. Int J Biol Macromol 106:803–822

    Article  CAS  PubMed  Google Scholar 

  3. Gileadi O (2017) Recombinant protein expression in E. coli: a historical perspective. Methods Mol Biol 1586:3–10

    Article  CAS  PubMed  Google Scholar 

  4. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421

    Article  CAS  PubMed  Google Scholar 

  5. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21(11):1266–1267

    Article  CAS  PubMed  Google Scholar 

  7. Hui CY, Guo Y, Zhang W, Huang XQ (2018) Rapid monitoring of the target protein expression with a fluorescent signal based on a dicistronic construct in Escherichia coli. AMB Express 8(1):81

    Article  PubMed  PubMed Central  Google Scholar 

  8. Basu A, Li X, Leong SS (2011) Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 92(2):241–251

    Article  CAS  PubMed  Google Scholar 

  9. Gaciarz A, Khatri NK, Velez-Suberbie ML, Saaranen MJ, Uchida Y, Keshavarz-Moore E et al (2017) Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media. Microb Cell Fact 16(1):108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saida F, Uzan M, Odaert B, Bontems F (2006) Expression of highly toxic genes in E. coli: special strategies and genetic tools. Curr Protein Pept Sci 7(1):47–56

    Article  CAS  PubMed  Google Scholar 

  11. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163

    Article  CAS  PubMed  Google Scholar 

  12. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  PubMed  Google Scholar 

  13. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  CAS  PubMed  Google Scholar 

  14. Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE et al (2016) What makes a bacterial species pathogenic?: comparative genomic analysis of the genus Leptospira. PLoS Negl Trop Dis 10(2):e0004403

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lehmann JS, Fouts DE, Haft DH, Cannella AP, Ricaldi JN, Brinkac L et al (2013) Pathogenomic inference of virulence-associated genes in Leptospira interrogans. PLoS Negl Trop Dis 7(10):e2468. https://doi.org/10.1371/journal.pntd.0002468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lehmann JS, Matthias MA, Vinetz JM, Fouts DE (2014) Leptospiral pathogenomics. Pathogens 3(2):280–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaurasia R, Marroquin AS, Vinetz JM, Matthias MA (2022) Pathogenic Leptospira evolved a unique gene family comprised of ricin B-like lectin domain-containing cytotoxins. Front Microbiol 13:859680

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chaurasia R, Salovey A, Guo X, Desir G, Vinetz JM (2022) Vaccination with Leptospira interrogans PF07598 gene family-encoded virulence modifying proteins protects mice from severe leptospirosis and reduces bacterial load in the liver and kidney. Front Cell Infect Microbiol 12:926994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cong ATQ, Witter TL, Schellenberg MJ (2022) High-efficiency recombinant protein purification using mCherry and YFP nanobody affinity matrices. Protein Sci 31(9):e4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rana MS, Wang X, Banerjee A (2018) An improved strategy for fluorescent tagging of membrane proteins for overexpression and purification in mammalian cells. Biochemistry 57(49):6741–6751

    Article  CAS  PubMed  Google Scholar 

  21. LaVallie ER, Lu Z, Diblasio-Smith EA, Collins-Racie LA, McCoy JM (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol 326:322–340

    Article  CAS  PubMed  Google Scholar 

  22. Correddu D, Montano Lopez JJ, Vadakkedath PG, Lai A, Pernes JI, Watson PR et al (2019) An improved method for the heterologous production of soluble human ribosomal proteins in Escherichia coli. Sci Rep 9(1):8884

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yasukawa T, Kanei-Ishii C, Maekawa T, Fujimoto J, Yamamoto T, Ishii S (1995) Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J Biol Chem 270(43):25328–25331

    Article  CAS  PubMed  Google Scholar 

  24. Loughran ST, Bree RT, Walls D (2017) Purification of polyhistidine-tagged proteins. Methods Mol Biol 1485:275–303

    Article  CAS  PubMed  Google Scholar 

  25. Blome MC, Petro KA, Schengrund CL (2010) Surface plasmon resonance analysis of ricin binding to plasma membranes isolated from NIH 3T3 cells. Anal Biochem 396(2):212–216

    Article  CAS  PubMed  Google Scholar 

  26. Dawson RM, Paddle BM, Alderton MR (1999) Characterization of the Asialofetuin microtitre plate-binding assay for evaluating inhibitors of ricin lectin activity. J Appl Toxicol 19(5):307–312

    Article  CAS  PubMed  Google Scholar 

  27. Falach R, Sapoznikov A, Gal Y, Elhanany E, Evgy Y, Shifman O et al (2020) The low density receptor-related protein 1 plays a significant role in ricin-mediated intoxication of lung cells. Sci Rep 10(1):9007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chaurasia R, Vinetz JM (2023) In silico prediction of molecular mechanisms of toxicity mediated by the leptospiral PF07598 gene family-encoded virulence-modifying proteins. Front Mol Biosci 9:1092197

    Article  PubMed  PubMed Central  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  30. Massiah MA, Wright KM, Du H (2016) Obtaining soluble folded proteins from inclusion bodies using sarkosyl, triton X-100, and CHAPS: application to LB and M9 minimal media. Curr Protoc Protein Sci 84:6

    Article  Google Scholar 

  31. Pina AS, Lowe CR, Roque AC (2014) Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 32(2):366–381

    Article  CAS  PubMed  Google Scholar 

  32. Lauretti-Ferreira F, Teixeira AAR, Giordano RJ, da Silva JB, Abreu PAE, Barbosa AS et al (2022) Characterization of a virulence-modifying protein of Leptospira interrogans identified by shotgun phage display. Front Microbiol 13:1051698

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saida F (2007) Overview on the expression of toxic gene products in Escherichia coli. Curr Protoc Protein Sci 50:5–19

    Article  Google Scholar 

  34. Stewart EJ, Aslund F, Beckwith J (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17(19):5543–5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262(5140):1744–1747

    Article  CAS  PubMed  Google Scholar 

  36. Qin M, Wang W, Thirumalai D (2015) Protein folding guides disulfide bond formation. Proc Natl Acad Sci USA 112(36):11241–11246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310

    Article  CAS  PubMed  Google Scholar 

  38. Moghadam M, Ganji A, Varasteh A, Falak R, Sankian M (2015) Refolding process of cysteine-rich proteins: chitinase as a model. Rep Biochem Mol Biol 4(1):19–24

    PubMed  PubMed Central  Google Scholar 

  39. Mayer M, Buchner J (2004) Refolding of inclusion body proteins. Methods Mol Med 94:239–254

    CAS  PubMed  Google Scholar 

  40. Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol 9:630551

    Article  PubMed  PubMed Central  Google Scholar 

  41. Carrio MM, Villaverde A (2001) Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett 489(1):29–33

    Article  CAS  PubMed  Google Scholar 

  42. Singhvi P, Saneja A, Srichandan S, Panda AK (2020) Bacterial inclusion bodies: a treasure trove of bioactive proteins. Trends Biotechnol 38(5):474–486

    Article  CAS  PubMed  Google Scholar 

  43. Ryabova NA, Marchenkov VV, Marchenkova SY, Kotova NV, Semisotnov GV (2013) Molecular chaperone GroEL/ES: unfolding and refolding processes. Biochemistry (Mosc) 78(13):1405–1414

    Article  CAS  PubMed  Google Scholar 

  44. Palmer I, Wingfield PT (2004) Preparation and extraction of insoluble (inclusion-body) proteins from Escherichia coli. Curr Protoc Protein Sci 70:6–3

    Google Scholar 

  45. Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347(5):1025–1037

    Article  CAS  PubMed  Google Scholar 

  46. Przybycien TM, Dunn JP, Valax P, Georgiou G (1994) Secondary structure characterization of beta-lactamase inclusion bodies. Protein Eng 7(1):131–136

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ke N, Berkmen M (2014) Production of disulfide-bonded proteins in Escherichia coli. Curr Protoc Mol Biol 108:16–21

    Article  Google Scholar 

  49. Salinas G, Pellizza L, Margenat M, Flo M, Fernandez C (2011) Tuned Escherichia coli as a host for the expression of disulfide-rich proteins. Biotechnol J 6(6):686–699

    Article  CAS  PubMed  Google Scholar 

  50. Vieira DS, Chaurasia R, Vinetz JM (2022) Comparison of the PF07598-encoded virulence-modifying proteins of L. interrogans and L. borgpetersenii. Trop Med Infect Dis 8(1):14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ewa Folta-Stogniew, Director of Biophysics Resource Keck Laboratory, and Dr. James W Murphy, Research Scientist, Yale University for their critical suggestions in CD-spectroscopy. We acknowledge the W. M. Keck Foundation Biotechnology Resource Laboratory at Yale University.

Funding

This work was supported by grants from the United States Public Health Service through National Institutes of Health grants R01AI108276 and U19AI115658, and the Americas Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RC, JV. Data curation and formal analysis: RC. Funding acquisition: JV. Investigation: RC, CL, KH, DSV, JV. Methodology: RC, JV. Resources: JV. Supervision: JV. Visualization: RC, CL, KH, DSV, JV. Writing—original draft: RC. Writing—review and editing: RC, CL, KH, DSV, JV.

Corresponding authors

Correspondence to Reetika Chaurasia or Joseph M. Vinetz.

Ethics declarations

Conflict of interest

Authors RC, CL, KH, DSV, and JMV declare that they have no conflict of interest regarding the publication of this work.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10930_2023_10152_MOESM1_ESM.tiff

Supplementary file1 Figure S1. Optimization of expression and purification of mCherry-LA3490. The pellet of clone expressing mCherry-LA3490 was solubilized using various approaches, and the purification was performed using the standard protocol mentioned in the experimental procedures. (a) Lane 1 shows induced supernatant which was obtained upon solubilization in CelLytic™ B Cell Lysis Reagent. Lane 2 shows induced supernatant solubilized in lysis buffer containing 20 mM Tris–HCl + 150 mM NaCl + 1% TritonX-100. Lanes 3- and 4 show induced supernatant solubilized in CelLytic™ B Cell Lysis Reagent containing 0.1% and 0.01% TritonX-100 respectively. Induced soluble fraction solubilized in CelLytic™ B Cell Lysis Reagent containing 0.1% TritonX-100, was used to purify the LA3490 proteins. The eluted fractions were analyzed on 4–12% bis–tris SDS-PAGE (right panel). F and W1-3 represent flow through and washes. E1-E5 is the eluate fractions. (b) The recombinant clone of mCherry-LA3490 producing pellet was solubilized in CelLytic™ B Cell Lysis Reagent containing 0.01% TritonX-100 and 1 mM CHAPS. IP and IS represent induced pellet and induced supernatant. F and W1-2 represent flow through and wash. E1-E10 is the eluate fractions. (c) The pellet was solubilized in lysis buffer 100 mM NaH2PO4, 10 mM Tris–HCl pH 7.4 containing 8 M Urea followed by sonication and separation of the pellet (IP) and supernatant (IS) fractions. In addition, the pellet was solubilized in lysis buffer 20 mM Tris–HCl + 150 mM NaCl containing 2% or 5% sarkosyl. The induced soluble fraction solubilized with 5% sarkosyl was subjected to purification using AKTA pure and eluted fractions were analyzed on 4–12% bis–tris SDS-PAGE (right panel). W shows wash, and E1-E8 represents eluted fractions. M represents the molecular weight marker. (TIFF 4423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, R., Liang, C., How, K. et al. Production and Purification of Cysteine-Rich Leptospiral Virulence-Modifying Proteins with or Without mCherry Fusion. Protein J 42, 792–801 (2023). https://doi.org/10.1007/s10930-023-10152-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10152-2

Keywords

Navigation