Skip to main content

Advertisement

Log in

Histone methyltransferase SETD2 inhibits M1 macrophage polarization and glycolysis by suppressing HIF-1α in sepsis-induced acute lung injury

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Sepsis is a severe syndrome caused by the imbalance of the host response to infection, accompanied by multiple organ damage, especially acute lung injury. SET Domain-Containing 2 (SETD2) is a methyltransferase catalyzing H3 lysine 36 trimethylation (H3K36me3) that regulates multiple biological processes. This study focused on explicating the action of SETD2 on macrophage function in sepsis and the precise mechanism involved. Enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting were used to determine expression. Luciferase reporter assay and chromatin immunoprecipitation assay were conducted to detect the binding of SETD2 or H3K36me3 with the hypoxia-inducible factor 1, alpha subunit (Hif1a) gene. A sepsis-induced acute lung injury model was constructed via cecal ligation and puncture (CLP). SETD2 was decreased in RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Besides, SETD2 suppressed M1 macrophage polarization and glycolysis caused by LPS. HIF-1α was enhanced in RAW 264.7 cells stimulated by LPS and inversely related to SETD2 expression. In addition, SETD2-catalyzed H3K36me3 bound to the Hif1a gene to modulate HIF-1α expression. Furthermore, Hif1a silencing suppressed Setd2 silencing-induced M1 macrophage polarization and glycolysis in RAW 264.7 cells. Moreover, overexpression of Setd2 inhibited CLP-induced lung injury and M1 macrophage polarization in mice. SETD2 suppressed M1 macrophage polarization and glycolysis via regulating HIF-1α through catalyzing H3K36me3 in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used during this study are available from the corresponding author on reasonable request.

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park I, Kim M, Choe K, Song E, Seo H, Hwang Y, Ahn J, Lee S-H, Lee JH, Jo YH (2019) Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J 53(3):1800786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353(16):1685–1693

    Article  CAS  PubMed  Google Scholar 

  4. Qiu N, Xu X, He Y (2020) LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm Med 20(1):1–12

    Article  Google Scholar 

  5. Ren Y, Li L, Wang M-M, Cao L-P, Sun Z-R, Yang Z-Z, Zhang W, Zhang P, Nie S-N (2021) Pravastatin attenuates sepsis-induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of Cav-1/eNOS pathway. Int Immunopharmacol 100:108077

    Article  CAS  PubMed  Google Scholar 

  6. Zou Z, Wang Q, Zhou M, Li W, Zheng Y, Li F, Zheng S, He Z (2020) Protective effects of P2X7R antagonist in sepsis-induced acute lung injury in mice via regulation of circ_0001679 and circ_0001212 and downstream Pln, Cdh2, and Nprl3 expression. J Gene Med 22(12):e3261

    Article  CAS  PubMed  Google Scholar 

  7. Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA (2009) The sepsis seesaw: tilting toward immunosuppression. Nat Med 15(5):496–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christaki E, Anyfanti P, Opal SM (2011) Immunomodulatory therapy for sepsis: an update. Expert Rev Anti Infect Ther 9(11):1013–1033

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Kong L, Tan S, Zhang Y, Song X, Wang T, Lin Q, Wu Z, Xiang P, Li C (2020) Zhx2 accelerates sepsis by promoting macrophage glycolysis via Pfkfb3. J Immunol 204(8):2232–2241

    Article  CAS  PubMed  Google Scholar 

  10. Xia H, Chen L, Liu H, Sun Z, Yang W, Yang Y, Cui S, Li S, Wang Y, Song L (2017) Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Sci Rep 7(1):1–11

    Google Scholar 

  11. Lu X-J, Chen J, Yu C-H, Shi Y-H, He Y-Q, Zhang R-C, Huang Z-A, Lv J-N, Zhang S, Xu L (2013) LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. J Exp Med 210(1):5–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng H, Wu L, Liu M, Zhu L, Chen Y, Zhou H, Shi X, Wei J, Zheng L, Hu X (2020) Bone marrow mesenchymal stem cell-derived exosomes attenuate LPS-induced ARDS by modulating macrophage polarization through inhibiting glycolysis in macrophages. Shock 54(6):828–843

    Article  CAS  PubMed  Google Scholar 

  13. Kelly B, O’neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25(7):771–784

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen Q, Shao X, He Y, Lu E, Zhu L, Tang W (2021) Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α pathway. Biol Pharm Bull 44(10):1536–1547

    Article  CAS  PubMed  Google Scholar 

  15. Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K (2020) SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell 38(3):350-365. e7

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Niu N, Li L, Shao R, Ouyang H, Zou W (2018) H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells. PLoS Biol 16(11):e2006522

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim Y, Nam HJ, Lee J, Kim C, Yu YS, Kim D, Park SW, Bhin J, Hwang D, Lee H (2016) Methylation-dependent regulation of HIF-1α stability restricts retinal and tumour angiogenesis. Nat Commun 7(1):1–14

    CAS  Google Scholar 

  18. Lee J, Park J, Choi H, Won H, Joo H, Shin D, Park M, Han B, Kim K, Lee T (2017) LSD1 demethylates HIF1α to inhibit hydroxylation and ubiquitin-mediated degradation in tumor angiogenesis. Oncogene 36(39):5512–5521

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Hanavan PD, Kras K, Ruiz YW, Castle EP, Lake DF, Chen X, O’Brien D, Luo H, Robertson KD (2018) Loss of SETD2 induces a metabolic switch in renal cell carcinoma cell lines toward enhanced oxidative phosphorylation. J Proteome Res 18(1):331–340

    PubMed  PubMed Central  Google Scholar 

  20. Tong Y, Yu Z, Chen Z, Zhang R, Ding X, Yang X, Niu X, Li M, Zhang L, Billiar TR (2021) The HIV protease inhibitor Saquinavir attenuates sepsis-induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase-9. Cell Death Dis 12(1):1–14

    Article  Google Scholar 

  21. Yuan H, Li N, Fu D, Ren J, Hui J, Peng J, Liu Y, Qiu T, Jiang M, Pan Q (2017) Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis. J Clin Investig 127(9):3375–3391

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen Z, Raghoonundun C, Chen W, Zhang Y, Tang W, Fan X, Shi X (2018) SETD2 indicates favourable prognosis in gastric cancer and suppresses cancer cell proliferation, migration, and invasion. Biochem Biophys Res Commun 498(3):579–585

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, Tang H, Xu J, Gao W-Q, Li L (2021) The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol 43:102004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu S, Zhu W, Shao M, Zhang F, Guo J, Xu H, Jiang J, Ma X, Xia X, Zhi X (2018) Ecto-5′-nucleotidase (CD73) attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 polarization in mice. J Neuroinflamm 15(1):1–14

    Article  Google Scholar 

  25. O’Reilly ME, Kajani S, Ralston JC, Lenighan YM, Roche HM, McGillicuddy FC (2019) Nutritionally derived metabolic cues typical of the obese microenvironment increase cholesterol efflux capacity of adipose tissue macrophages. Mol Nutr Food Res 63(2):1800713

    Article  PubMed  Google Scholar 

  26. Xia L, Sun J, Xie S, Chi C, Zhu Y, Pan J, Dong B, Huang Y, Xia W, Sha J (2020) PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer. Cell Prolif 53(11):e12918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai T, Ke Q, Fang Y, Wen P, Chen H, Yuan Q, Luo J, Zhang Y, Sun Q, Lv Y (2020) Sodium–glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death Dis 11(5):1–17

    Article  Google Scholar 

  28. Fitzpatrick SF, Tambuwala MM, Bruning U, Schaible B, Scholz CC, Byrne A, O’Connor A, Gallagher WM, Lenihan CR, Garvey JF (2011) An intact canonical NF-κB pathway is required for inflammatory gene expression in response to hypoxia. J Immunol 186(2):1091–1096

    Article  CAS  PubMed  Google Scholar 

  29. Niu N, Shen X, Zhang L, Chen Y, Lu P, Yang W, Liu M, Shi J, Xu D, Tang Y, Yang X, Weng Y, Zhao X, Wu LM, Sun Y, Xue J (2023) Tumor cell-intrinsic SETD2 deficiency reprograms neutrophils to foster immune escape in pancreatic tumorigenesis. Adv Sci (Weinh) 10(2):e2202937

    Article  PubMed  Google Scholar 

  30. Lu Y, Rong J, Lai Y, Tao L, Yuan X, Shu X (2020) The degree of helicobacter pylori infection affects the state of macrophage polarization through crosstalk between ROS and HIF-1α. Oxid Med Cell Longev 2020:5281795

    Article  PubMed  PubMed Central  Google Scholar 

  31. Richmond A (2002) Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2(9):664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang ZH, Yin DZ, Pang XS, Wang ZC (2015) Effects of HIF prolyl-hydroxylase-2 gene silencing on HCG-induced vascular endothelial growth factor expression in luteal cells. Genet Mol Res 14(4):16744–16755

    Article  CAS  PubMed  Google Scholar 

  33. Bae WJ, Shin MR, Kang SK, Zhang J, Kim JY, Lee SC, Kim EC (2015) HIF-2 inhibition supresses inflammatory responses and osteoclastic differentiation in human periodontal ligament cells. J Cell Biochem 116(7):1241–1255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The present study was supported by the Natural Science Foundation of China (81801960, 82072220).

Author information

Authors and Affiliations

Authors

Contributions

Y-M and KW-K performed the research and analyzed the data, YQ-C, Y-M and KW-K wrote the major part of the manuscript. T-Y and XM-D designed the research, ensured correct analysis of the data, and wrote the manuscript. All authors read approved the final manuscript. All authors critically revised the manuscript and gave final approval of the manuscript.

Corresponding authors

Correspondence to Xiao-ming Deng or Tao Yang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Additional information

Edited by Christian Bogdan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

430_2023_778_MOESM1_ESM.tif

Supplementary file1 Figure S1. Effect of Setd2 overexpression on M2 macrophage polarization in LPS-treated RAW 264.7 cells. (A, B) RAW 264.7 cells were transfected with Setd2 expression plasmid- or empty vector, and at 24 h after transfection, cells were treated with 2 μg/ml LPS for 24 h. Cells without treatment were used as a control. (C) Arg1 and (B) Il10 mRNA levels were assessed by RT-qPCR. Data are expressed as mean ± SD. n = 3. **P < 0.01, ***P < 0.001 vs. control. (TIF 91 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Kong, Kw., Chang, Yq. et al. Histone methyltransferase SETD2 inhibits M1 macrophage polarization and glycolysis by suppressing HIF-1α in sepsis-induced acute lung injury. Med Microbiol Immunol 212, 369–379 (2023). https://doi.org/10.1007/s00430-023-00778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-023-00778-5

Keywords

Navigation