Skip to main content
Log in

The status of in vitro regeneration and genetic transformation in the recalcitrant oil seed crop Sesamum indicum L

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Sesame (Sesamum indicum L.) is the oldest important edible oilseed crop found throughout many tropical and subtropical regions of the world. India ranks second in its domestication with a total production of 0.67 million tons. The growth index of sesame in Asia, Africa, and South and Central America is 54.9%, 40.8%, and 4.3%, respectively. The crop has high economic potential but stress factors like temperature sensitivity, early senescence, pest attack, water logging, and disease infestations limit its productivity worldwide. Its recalcitrant nature, sexual incompatibility, and post fertilization barriers greatly restrict the generation of new varieties, via tissue culture and traditional breeding strategies. Thus, genetic engineering appears to be the best alternative to improve its yield by developing stress-tolerant plants. The callus induction and regeneration frequency in sesame is highly genotype dependent. Regeneration is observed in different cultivars via callus phase or directly from different explants mainly on Murashige and Skoog basal medium (MS) with high cytokinin and low auxin concentrations. The attempts towards developing genetic transformation protocols has resulted in very limited success. The present review highlights the history and discusses the detailed progress of sesame tissue culture and genetic transformation research with respect to genotype dependency, different medium compositions, plant hormones, and explant age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

Data availability

This is a review article and does not have any data.

References

  • Abdellatef E, Ahmed MMM, Daffalla HM, Khalafalla MM (2010) Enhancement of adventitious shoot regeneration in sesame (Sesamum indicum L.) cultivar Promo ky using ethylene inhibitors. J Phytol 2:61–67

    Google Scholar 

  • Al-Shafeay AF, Ibrahim AS, Nesiem MR, Tawfik MS (2011) Establishment of regeneration and transformation system in Egyptian sesame (Sesamum indicum L.) cv Sohag 1. GM Crops 2:182–192

    Article  PubMed  Google Scholar 

  • Ali GM, Yasumoto S, Seki-Katsuka M (2007) Assessment of genetic diversity in sesame (Sesamum indicum L.) detected by amplified fragment length polymorphism markers. Electron J Biotechnol 10:12–23

    Article  Google Scholar 

  • Anandan R, Prakash M, Deenadhayalan T, Nivetha R, Kumar NS (2018) Efficient in vitro plant regeneration from cotyledon-derived callus cultures of sesame (Sesamum indicum L.) and genetic analysis of True-to-Type regenerants using RAPD and SSR markers. S Afr J Bot 119:244–251

    Article  CAS  Google Scholar 

  • Andrade PBD, Freitas BM, Rocha EEDM, Lima JAD, Rufino LL (2014) Floral biology and pollination requirements of sesame (Sesamum indicum L.). Acta Sci Anim Sci 36:93–99

    Article  Google Scholar 

  • Archbold DD (1988) Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks in vitro. HortScience 23:880–881

    Article  CAS  Google Scholar 

  • Ashwani S, Ravishankar GA, Giridhar P (2017) Silver nitrate and 2-(N-morpholine) ethane sulphonic acid in culture medium promotes rapid shoot regeneration from the proximal zone of the leaf of Capsicum frutescens Mill. Plant Cell Tiss Org Cult 129:175–180

    Article  CAS  Google Scholar 

  • Badri J, Yepuri V, Ghanta A, Siva S, Siddiq EA (2014) Development of microsatellite markers in sesame (Sesamum indicum L.). Turk J Agric for 38:603–614

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on Sesamum indicum L.-an important oil plant. J Agric Technol 2:259–269

    Google Scholar 

  • Bhat KV, Babrekar PP, Lakhanpaul S (1999) Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110:21–34

    Article  CAS  Google Scholar 

  • Bhattacharyya J, Chakraborty A, Mitra J, Chakraborty S, Pradhan S, Manna A, Sikdar N, Sen SK (2015) Genetic transformation of cultivated sesame (Sesamum indicum L. cv Rama) through particle bombardment using 5-day-old apical, meristematic tissues of germinating seedlings. Plant Cell Tiss Org Cult 123:455–466

    Article  CAS  Google Scholar 

  • Brown DCW, Leung DWM, Thorpe TA (1979) Osmotic requirement for shoot formation in tobacco callus. Physiol Plant 46:36–41

    Article  CAS  Google Scholar 

  • Caboni E, Lauri P, Angell SD (2000) In vitro plant regeneration from callus of shoot apices in apple shoot culture. Plant Cell Rep 19:755–760

    Article  CAS  PubMed  Google Scholar 

  • Chamandoosti F (2016) Influence of plant growth regulators and explant type on multiple shoot induction and somatic embryogenesis in sesame (Sesamum indicum L.). Int J Environ Agric 2:68–72

    Google Scholar 

  • Choi Y, Jeong J (2002) Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plant Cell Rep 20:1112–1116

    Article  CAS  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma 25:1175–1190

    Article  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in Sesame. Front Plant Sci 8:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  • Debnath AJ, Gangopadhyay G, Basu D, Sikdar SR (2018) An efficient protocol for in vitro direct shoot organogenesis of Sesamum indicum L. using cotyledon as explant. 3 Biotech 8:1–13

    Article  Google Scholar 

  • Dixit A, Jin MH, Chung JW, Yu JW, Chung HK, Ma KH, Park YJ, Cho EG (2005) Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol Ecol Notes 5:736–738

    Article  CAS  Google Scholar 

  • Dossa K, Li D, Wang L, Zheng X, Liu A, Yu J, Wei X, Zhou R, Fonceka D, Diouf D, Liao B, Cissé N, Zhang X (2017) Transcriptomic, biochemical and physio-anatomical investigations shed more light on responses to drought stress in two contrasting sesame genotypes. Sci Rep 7:8755

    Article  PubMed  PubMed Central  Google Scholar 

  • Du H, Zhang H, Wei L, Li C, Duan Y, Wang H (2019) A high-density genetic map constructed using specific length amplified fragment (SLAF) sequencing and QTL mapping of seed-related traits in sesame (Sesamum indicum L.). BMC Plant Biol 19:588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enikuomehin OA, Jimoh M, Olowe VIO, Ayo-John EI, Akintokun PO (2011) Effect of sesame (Sesamum indicum L.) population density in a sesame/maize (Zea mays L.) intercrop on the incidence and severity of foliar diseases of sesame. Arch Phytopath Plant Prot 44:168–178

    Article  Google Scholar 

  • Estruch JJ, Peretó JG, Vercher Y, Beltrán JP (1989) Sucrose loading in isolated veins of Pisum sativum: regulation by abscisic acid, gibberellic acid, and cell turgor. Plant Physiol 91:259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2020) Food and Agriculture Organization of the United Nations, FAOSTAT: FAO Statistical Databases. https://www.fao.org/faostat/en/#data/QCL/visualize

  • FAO (2021) Food and Agriculture Organization of the United Nations, FAOSTAT: FAO Statistical Databases. https://www.fao.org/faostat/en/#data/QCL/visualize

  • Feher A, Pasternak T, Otvos K, Miskolczi P, Dudits D (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5–12

    CAS  Google Scholar 

  • Fuller DQ (2003) Further evidence on the prehistory of sesame. Asian Agri-History 7:127–137

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gangopadhyay G, Poddar R, Gupta S (1998) Micropropagation of sesame (Sesamum indicum L.) by in vitro multiple shoot production from nodal explants. Phytomorphology 48:83–89

    Google Scholar 

  • García-Martín G, Manzanera JA, González-Benito ME (2005) Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tiss Org Cult 80:171–177

    Article  Google Scholar 

  • Gayatri T, Basu A (2020) Development of reproducible regeneration and transformation system for Sesamum indicum. Plant Cell Tiss Org Cult 143:441–456

    Article  CAS  Google Scholar 

  • George L, Bapat VA, Rao PS (1987) In vitro multiplication of sesame (Sesamum indicum) through tissue culture. Ann Bot 60:17–21

    Article  Google Scholar 

  • Honnale H, Rao S (2013) Direct somatic embryogenesis in Sesamum indicum (L.) cv-e8 from cotyledon and hypocotyl explants. Int J Appl Biol Pharm Technol 4:120–127

    CAS  Google Scholar 

  • Hoerster G, Wang N, Ryan L, Wu E, Anand A, McBride K, Lowe K, Jones T, Gordon-Kamm B (2020) Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitro Cell Dev Biol - Plant 56:265–279

    Article  CAS  Google Scholar 

  • Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annum L.) via organogenesis. In Vitro Cell Dev Biol - Plant 32:72–80

    Article  CAS  Google Scholar 

  • Islam F, Gill RA, Ali B, Farooq MA, Xu L, Najeeb U, Zhou W (2016) Sesame. In: Gupta SR (ed) Breeding oilseed crops for sustainable production: opportunities and constraints. Academic Press, pp 135–147

    Chapter  Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Kamal-Eldin A, Yousif G, Iskander GM, Appelqvist LA (1992) Seed lipids of Sesamum indicum L. and related wild species in Sudan I: fatty acids and triacylglycerols. Eur J Lipid Sci Technol 94:254–259

    CAS  Google Scholar 

  • Kapoor S, Parmer SS, Yadav M, Chaudhary D, Sainger M, Jaiwal R, Jaiwal PK (2015) Sesame (Sesamum indicum L.). In: Wang K (ed) Agrobacterium Protocols. Methods in Molecular Biology. Humana Press, Totowa, 37–45

  • Khemkladngoen N, Cartagena J, Shibagaki N, Fukui K (2011) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing Plant, Jatropha curcas L. J Biosci Bioeng 111:67–70

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Baskar TB, Park SU (2016) Effect of carbon sources and sucrose concentrations on shoot organogenesis of Aloe saponaria. Biosci Biotechnol Res Asia 13:925–930

    Article  Google Scholar 

  • Kobayashi T, Kinoshita M, Hattori S, Ogawa T, Tsuboi Y, Ishida M, Saito H (1990) Development of the sesame metallic fuel performance code. Nuc Technol 89:183–193

    Article  CAS  Google Scholar 

  • Kong J, Martin-Ortigosa S, Finer J, Orchard N, Gunadi A, Batts LA, Thakare D, Rush B, Schmitz O, Stuiver M, Olhoft P, Pacheco-Villalobos D (2020) Overexpression of the transcription factor growth-regulating factor 5 improves transformation of dicot and monocot species. Front Plant Sci 11:1389

    Article  Google Scholar 

  • Kulkarni VV, Ranganatha CN, Shankergoud I (2017) Interspecific crossing barriers in sesame (Sesamum indicum L.). Int J Curr Microbiol App Sci 6:4894–4900

    Article  Google Scholar 

  • Kumar V, Ramakrishna A, Ravishankar GA (2007) Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell Dev Biol - Plant 43:602–607

    Article  CAS  Google Scholar 

  • Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3 - a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12:1–15

    Article  Google Scholar 

  • Kumaraswamy HH, Jawaharlal J, Ranganatha ARG, Rao SC (2015) Safe sesame (Sesamum indicum L.) production: perspectives, practices, and challenges. J Oilseed Res 32:1–24

    Google Scholar 

  • Kwon TH, Abe T, Sasahara T (1993) Efficient callus induction and plant regeneration in Sesamum species. Plant Tiss Cult Let 10:260–266

    Article  CAS  Google Scholar 

  • Lakhanpaul S, Singh V, Kumar S, Bhardwaj D, Bhat KV (2012) Sesame: overcoming the abiotic stresses in the queen of oilseed crops. In: Tuteja N, Gill SS, Antonio FT, Tuteja R (eds) Improving Crop Resistance to Abiotic Stress, 1st edn. Wiley, Germany, pp 1251–1283

    Chapter  Google Scholar 

  • Lokesha R, Rahaminsab J, Ranganatha AR, Dharmaraj PS (2012) Whole plant regeneration via adventitious shoot formation from de-embryonated cotyledon explants of sesame (Sesamum indicum L.). World J Sci Technol 2:47–51

    CAS  Google Scholar 

  • Lee JI, Park YH, Park YS, Im BG (1985) Propagation of sesame (Sesamum indicum L.) through shoot tip culture. Korean J Breed 17:367–372

    Google Scholar 

  • Malaghan S (2016) Whole plant regeneration through direct organogenesis in sesame (Sesamum indicum L.). Green Farming Int J 7:1034–1039

    Google Scholar 

  • Malaghan SV, Lokesha R, Savitha R, Ranganatha AR (2013) Adventitious shoot regeneration in sesame (Sesamum indicum L.) (Pedaliaceae) via deembryonated cotyledonary explants. Res J Biol 1:31–35

    Google Scholar 

  • Martin K (2002) Rapid propagation of Holostemma ada-kodien Schult. a rare medicinal plant, through axillary bud multiplication and indirect organogenesis. Plant Cell Rep 21:112–117

    Article  CAS  Google Scholar 

  • Mary RJ, Jayabalan N (1997) Influence of growth regulators on somatic embryogenesis in Sesamum indicum L. Plant Cell Tiss Org Cult 46:67–70

    Article  Google Scholar 

  • Mohiuddin AKM, Chowdhury MKU, Abdullah ZC, Napia S (1997) Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell Tiss Org Cult 51:75–78

    Article  CAS  Google Scholar 

  • Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators iii: gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. In: George EF, Hall MA, De Klerk G-J (eds) Plant Propagation by Tissue Culture: The Background, 3rd edn. Springer, The Netherlands, pp 227–282

    Google Scholar 

  • Morris JB (2002) Food, industrial, nutraceutical, and pharmaceutical uses of sesame genetic resources. In: Janick J, Whipkey A (eds) Trends in New Crops and New Uses. ASHS Press, Alexandria, pp 153–156

    Google Scholar 

  • Muthulakshmi C, Sivaranjani R, Selvi S (2021) Modification of sesame (Sesamum indicum L.) for triacylglycerol accumulation in plant biomass for biofuel applications. Biotechnol Rep 32:e00668

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nelson-Vasilchik K, Hague JP, Tilelli M, Kausch AP (2022) Rapid transformation and plant regeneration of sorghum (Sorghum bicolor L.) mediated by altruistic Baby boom and Wuschel2. In Vitro Cell Dev Biol - Plant 58:331–342

    Article  CAS  Google Scholar 

  • Nimmakayala P, Perumal R, Mulpuri S, Reddy UK (2011) Sesamum. In: Kole C (ed) Wild Crop Relatives: Genomic and Breeding Resources, Oilseeds. Springer, Berlin, Heidelberg, pp 261–273

    Chapter  Google Scholar 

  • Panigrahi J, Dholu P, Tanvi J, Shah TJ, Gantait S (2017) Silver nitrate induced in vitro shoot multiplication and precocious flowering in Catharanthus roseus (L.) G. Don, a rich source of terpenoid indole alkaloids. Plant Cell Tiss Org Cult 132:579–584

    Article  Google Scholar 

  • Pua EC, Chi GL (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol Plant 88:467–474

    Article  CAS  Google Scholar 

  • Pusadkar PP, Kokiladevi E, Aishwarya V, Gnanam R, Sudhakar D, Balasubramanian P (2015) Efficacy of growth hormone for callus induction in sesame (Sesamum indicum L.). J Cell Tiss Res 15:5067–5071

    CAS  Google Scholar 

  • Pusadkar P, Kokiladevi E, Shilpa B (2016) Efficacy of plant growth hormones for shoot induction and regeneration in Sesame (Sesamum indicum L.). Res J Biotechnol 11:27–30

    Google Scholar 

  • Raja A, Jayabalan N (2010) Callus induction and plantlet regeneration from leaf explant of sesame (Sesamum indicum L. Cv SVPR - 1). J Swamy Bot - Club 27:93–98

    Google Scholar 

  • Raja A, Jayabalan N (2011) In vitro shoot regeneration and flowering of sesame (Sesamum indicum L.) cv SVPR-1. J Agric Technol 7:1089–1096

    Google Scholar 

  • Rajput P, Agarwal P, Gangapur DR, Agarwal PK (2022) Development of a high-frequency adventitious shoot regeneration using cotyledon explants of an important oilseed crop Sesamum indicum L. In Vitro Cell Dev Biol - Plant 58:470–478

    Article  CAS  Google Scholar 

  • Ramage CM, Leung DWM (1996) Influence of BA and sucrose on the competence and determination of pepper (Capsicum annuum L. var. sweet banana) hypocotyl cultures during shoot formation. Plant Cell Rep 15:974–979

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1992) Enhancement of shoot regeneration from cotyledons of Cucumis melo L. by AgNO3, an inhibitor of ethylene action. J Plant Physiol 140:485–488

    Article  CAS  Google Scholar 

  • Saftner RA, Wyse RE (1984) Effect of plant hormones on sucrose uptake by sugar beet root tissue Discs. Plant Physiol 74:951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan S, Nadarajan N (2005) Effect of media supplements on in vitro response of sesame (Sesamum indicum L.) genotypes. Res J Agric Biol Sci 1:98–100

    Google Scholar 

  • Savitha R, Lokesha R, Malaghan SV (2016) Whole plant regeneration through calli of hypocotyls origin in sesame (Sesamum indicum L.). Int J Agric Sci 7:64–73

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Seo HY, Kim YJ, Park TI, Kim HS, Yun SJ, Park KH, Oh MK, Choi MY, Paik CH, Lee YS, Choi YE (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. In Vitro Cell Dev Biol - Plant 43:209–214

    Article  CAS  Google Scholar 

  • Shashidhara N, Ravikumar H, Ashoka N, Santosh DT, Pawar P, Lokesha R, Janagoudar BS (2011) Callus induction and subculturing in sesame (Sesamum indicum L.): a basic strategy. Int J Agric Environ Biotechnol 4:153–156

    Google Scholar 

  • Silme RS, Cagirgan MI (2010) Screening for resistance to Fusarium wilt in induced mutants and world collection of sesame under intensive management. Turk J Field Crops 15:89–93

    Google Scholar 

  • Songstad DD, Duncan DR, Widholm JM (1988) Effect of l-amino cyclopropane-l-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Rep 7:262–265

    Article  CAS  PubMed  Google Scholar 

  • Spandana B, Reddy VP, Prasanna GJ, Anuradha G, Sivaramakrishnan S (2012) Development and characterization of microsatellite markers (SSR) in Sesamum (Sesamum indicum L.) species. Appl Biochem Biotechnol 168:1594–1607

    Article  CAS  PubMed  Google Scholar 

  • Steward FC, Ammirato PV, Mapes MO (1970) Growth and development of totipotent cells: some problems, procedures, and perspectives. Ann Bot 34:761–787

    Article  CAS  Google Scholar 

  • Strickland SG, Nichol JW, McCall CM, Stuart DA (1987) Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci 48:113–121

    Article  CAS  Google Scholar 

  • Svabova L, Griga M (2008) The effect of cocultivation treatment on transformation efficiency in pea (Pisum sativum L.). Plant Cell Tiss Org Cult 95:293–304

    Article  CAS  Google Scholar 

  • Taskin KM, Ercan AG, Turgut K (1999) Agrobacterium tumefaciens-mediated transformation of sesame (Sesamum indicum L.). Turk J Bot 23:291–295

    Google Scholar 

  • Teklu DH, Shimelis H, Abady S (2022) Genetic improvement in sesame (Sesamum indicum L.) Progress Outlook: A Review. Agronomy 12:2144

    Article  CAS  Google Scholar 

  • Tiwari S, Kumar S, Gontia I (2011) Biotechnological approaches for sesame (Sesamum indicum L.) and Niger (Guizotia abyssinica L.f. Cass.). As Pac J Mol Biol Biotechnol 19:2–9

    Google Scholar 

  • Tripathy SK, Kar J, Sahu D (2019) Advances in Sesame (Sesamum indicum L.) Breeding. In: Al-Khayr J, Jain S, Johnson D (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham, pp 577–635

    Chapter  Google Scholar 

  • Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68:1014–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uncu AÖ, Gultekin V, Allmer J, Frary A, Doganlar S (2015) Genomic simple sequence repeat markers reveal patterns of genetic relatedness and diversity in sesame. Plant Genome 8:1–12

    Article  CAS  Google Scholar 

  • Wadeyar BS, Lokesha R, Gayatree GS, Sharanamma S (2013) Sesame shoot regeneration-using different combinations of growth regulators. Mol Plant Breed 4:267–269

    Google Scholar 

  • Wang L, Yu J, Li D, Zhang X (2015) Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum. Plant Cell Physiol 56:e2

    Article  PubMed  Google Scholar 

  • Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yu J, Zhang Y, You J, Zhang X, Wang L (2021) Sinbase 2.0: an updated database to study multi-omics in Sesamum indicum. Plants 10:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang Y, Zhu X, Zhu X, Li D, Zhang X, Gao Y, Xiao G, Wei X, Zhang X (2017) Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance. Sci Rep 7:8349

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFD, Leung J (2008) An update on abscisic acid signalling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Miao H, Li C, Duan Y, Niu J, Zhang T, Zhao Q, Zhang H (2014) Development of SNP and InDel markers via de novo transcriptome assembly in Sesamum indicum L. Mol Breed 34:2205–2217

    Article  CAS  Google Scholar 

  • Wei LB, Zhang HY, Zheng YZ, Miao HM, Zhang TZ, Guo WZ (2009) A genetic linkage map construction for sesame (Sesamum indicum L.). Genes Genom 31:199–208

    Article  CAS  Google Scholar 

  • Wei X, Gong H, Yu J, Liu P, Wang L, Zhang Y, Zhang X (2017) Sesame FG: an integrated database for the functional genomics of sesame. Sci Rep 7:2342

    Article  PubMed  PubMed Central  Google Scholar 

  • Were B, Gudu S, Onkware AO, Carlsson AS, Welander M (2006) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tiss Org Cult 85:235–239

    Article  Google Scholar 

  • Wesis EA (1971) Castor. Leonard Hill Books, London, Sesame and Safflower

    Google Scholar 

  • Williams J, Pink DAC, Biddington NL (1990) Effect of silver nitrate on long term culture and regeneration of callus from Brassica oleracea var. gemmifera. Plant Cell Tiss Org Cult 21:61–66

    Article  CAS  Google Scholar 

  • Xu ZQ, Jia JF, Hu ZD (1997) Somatic embryogenesis in Sesamum indicum L. cv. Nigrum J Plant Physiol 150:755–758

    Article  CAS  Google Scholar 

  • Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tiss Org Cult 103:377–386

    Article  CAS  Google Scholar 

  • Yan-Xin Z, Lin-Hai W, Dong-Hua LI, Yuan GAO, Hai-xia LÜ, Xiu-rong ZL (2014) Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. Sci Agric Sin 47:422–430

    Google Scholar 

  • Yermanos DM, Hemstreet S, Saleeb W, Huszr CK (1972) Oil content and composition of the seed in the world collection of sesame introductions. J Am Oil Chem Soc 49:20–23

    Article  CAS  Google Scholar 

  • You J, Li D, Yang L, Dossou SSK, Zhou R, Zhang Y, Wang L (2022) CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Sesame (Sesamum indicum L.). Front Plant Sci 13:935825

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimik M, Arumugam N (2017) Induction of shoot regeneration in cotyledon explants of the oilseed crop Sesamum indicum L. J Genet Eng Biotechnol 15:303–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zhang FL, Takahata Y, Xu JB (1998) Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. Pekinensis). Plant Cell Rep 17:780–786

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q, Yue M (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14:401

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CSIR-CSMCRI Communication No. 152/2022. PR is thankful for UGC-JRF/SRF and AcSIR for enrolment in Ph.D. P.A. acknowledges the DST WOS-A scheme for financial assistance. All the authors are thankful to the Department of Science and Technology DST (SERB-CRG/2018/000145) and the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial assistance.

Funding

This work is supported by the Department of Science and Technology DST (SERB-CRG/2018/000145) and the Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

PKA conceived and planned the review; PR, PA, and PKA wrote the review.

Corresponding author

Correspondence to Pradeep K. Agarwal.

Ethics declarations

Compliance with ethical standards

The present research does not involve human or animal participation.

Consent

All the authors have read and approved the manuscript and provided their consent for publication.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, P., Agarwal, P. & Agarwal, P.K. The status of in vitro regeneration and genetic transformation in the recalcitrant oil seed crop Sesamum indicum L. In Vitro Cell.Dev.Biol.-Plant 59, 653–670 (2023). https://doi.org/10.1007/s11627-023-10374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-023-10374-0

Keywords

Navigation