Skip to main content
Log in

Esomeprazole-Loaded Flash Release Sublingual Wafers: Formulation, Optimization, and Characterization

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The objective of the study was to develop sublingual wafers loaded with esomeprazole magnesium trihydrate (EMT) that exhibit rapid dissolution and enhanced penetration upon administration through sublingual mucosa, thereby ensuring immediate action.

Method

Sublingual wafers containing esomeprazole magnesium trihydrate were prepared using the solvent casting method. The formulation included different concentrations of hydroxypropyl methylcellulose E-15 (HPMC E-15), sodium starch glycolate (SSG), and polyethylene glycol 400 (PEG 400), as suggested by the DESIGN EXPERT software. An optimization strategy employing desirability values was utilized to optimize the responses. The wafers underwent physical characterization and in vitro dissolution study, followed by ex vivo drug permeation assessment and histopathological evaluation.

Results

The optimized sublingual wafers exhibited disintegration time of 27.67 ± 0.92 s, folding endurance of 299.71 ± 1.67, and drug content of 92.99 ± 3.37% with a percent deviation of less than 5. In vitro release study showed 82.92 ± 4.13% drug release in the 90s, following the Korsmeyer-Peppas mechanism. Ex vivo permeation demonstrated 80.07 ± 3.04% drug diffusion in 90 s. Histopathological investigations confirmed the safety of optimized wafers on sheep’s sublingual mucosa. Short-term stability study revealed the wafer’s stability for three months at 25–27 °C and 60% relative humidity.

Conclusion

The formulation of esomeprazole magnesium trihydrate (EMT)-loaded wafer is expected to enhance patient compliance by eliminating the requirement of water intake during the treatment of peptic ulcers and the need for swallowing. Moreover, the wafer offers a rapid onset of action and quick disintegration, providing a fast and convenient treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Costa JS, de Oliveira CK, Oliveira-Nascimento L. A mini-review on drug delivery through wafer technology: formulation and manufacturing of buccal and oral lyophilizates. J Adv Res. 2019;20:33–41. https://doi.org/10.1016/j.jare.2019.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res. 2014;28:81–97. https://doi.org/10.7555/2FJBR.27.20120136.

  3. Singh S, Jain S, Muthu MS, Tiwari S, Tilak R. Preparation and evaluation of buccal bioadhesive films containing clotrimazole. Aaps Pharm Sci Tech. 2008;9:660–7. https://doi.org/10.1208/2Fs12249-008-9083-3.

  4. Ravisankar P, Koushik O, Reddy A, KumarU AP, Pragna P. A detailed analysis on acidity and ulcers in esophagus, gastric and duodenal ulcers and management. IOSR J Dent Med Sci. 2016;15:94–114. https://doi.org/10.9790/0853-1511094114.

    Article  Google Scholar 

  5. Malfertheiner P, Chan FKL, Mccoll KEL. Peptic ulcer disease. Lancet. 2009;374:1449–61. https://doi.org/10.1016/s0140-6736(09)60938-7.

    Article  CAS  PubMed  Google Scholar 

  6. Schubert ML, Peura DA. Basic and clinical reviews in basic and clinical control of gastric acid secretion in health and disease. Gastroenterology. 2008;134:1842–60. https://doi.org/10.1053/j.gastro.2008.05.021.

    Article  CAS  PubMed  Google Scholar 

  7. Kamada T, Satoh K, Itoh T, Ito M. Evidence-based clinical practice guidelines for peptic ulcer disease. J Gastroenterol. 2021;56:303–22. https://doi.org/10.1007/2Fs00535-021-01769-0.

  8. Wu JCY. Managing peptic ulcer and gastroesophageal reflux disease in elderly Chinese patients – focus on esomeprazole. Clin Interv Aging. 2013;8:1433–43. https://doi.org/10.2147/cia.s41350.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kale-Pradhan PB, Landry HK, Sypula WT. Esomeprazole for acid peptic disorders. Ann Pharmacother. 2002;36:655–63. 2002;36(4):655–63. https://doi.org/10.1345/aph.1a104.

  10. Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WN. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597:179–86. https://doi.org/10.1016/j.aca.2007.07.011.

    Article  CAS  PubMed  Google Scholar 

  11. Ng SF, Jumaat N. Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci. 2014;51:173–9. https://doi.org/10.1016/j.ejps.2013.09.015.

    Article  CAS  PubMed  Google Scholar 

  12. Galgatte U, Chaudhari PP. Development of fast dissolving sublingual wafers by using film former: optimization and characterization. J Chem Pharm Res. 2009;9:82–91. https://doi.org/10.1016/j.ajps.2016.05.004.

  13. Lim SC, Paech MJ, Sunderland B, Liu Y. In vitro and in vivo evaluation of a sublingual fentanyl wafer formulation. Drug Des Dev Ther. 2013;7:317–24. https://doi.org/10.2147/2FDDDT.S42619.

  14. Boateng J, Okeke O. Evaluation of clay-functionalized wafers and films for nicotine replacement therapy via buccal mucosa. Pharmaceutics. 2019;11:104. https://doi.org/10.3390/pharmaceutics11030104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pund S, Rasve G, Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur J Pharm Sci. 2013;48:195–201. https://doi.org/10.1016/j.ejps.2012.10.029.

    Article  CAS  PubMed  Google Scholar 

  16. Nour SA, Abdelmalak NS, Naguib MJ, Rashed HM, Ibrahim AB. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Delivery. 2016;23:3681–95. https://doi.org/10.1080/10717544.2016.1223216.

    Article  CAS  PubMed  Google Scholar 

  17. Chavan DU, Marques SM, Bhide PJ, Kumar L, Shirodkar RK. Rapidly dissolving felodipine nanoparticle strips-formulation using design of experiment and characterisation. J Drug Delivery Sci Technol. 2020;60:1–5. https://doi.org/10.1016/j.jddst.2020.102053.

    Article  CAS  Google Scholar 

  18. Desai PM, Liew CV, Heng PW. Review of disintegrants and the disintegration phenomena. J Pharm Sci. 2016;105:2545–55. https://doi.org/10.1016/j.xphs.2015.12.019.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar M, Sinhal A, Kumar P, Kumar A, Chaturvedi M, Bhadoria P. Formulation and in vitro evaluation of periodontal films containing ofloxacin. J Chronotheraphy Drug Delivery. 2011;2:37–41. https://doi.org/10.4172/2329-6887.1000210.

    Article  CAS  Google Scholar 

  20. Marques MR, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011;18:15–28. https://doi.org/10.14227/DT180311P15.

  21. Liew KB, Tan YT, Peh KK. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev Ind Pharm. 2014;40:110–9. https://doi.org/10.7897/2230-8407.0910221.

    Article  CAS  PubMed  Google Scholar 

  22. Galgatte UC, Khanchandani SS, Jadhav YG, Chaudhari PD. Investigation of different polymers, plasticizers and superdisintegrating agents alone and in combination for use in the formulation of fast dissolving oral films. Int J PharmTech Res. 2013;5:1465–72.

    CAS  Google Scholar 

  23. Draskovic M, Turkovic E, Vasiljevic I, Cvijic S, Vasiljevic D, Parojcic J. Comprehensive evaluation of formulation factors affecting critical quality attributes of casted orally disintegrating films. J Drug Delivery Sci Technol. 2020;56:101614. https://doi.org/10.1016/j.jddst.2020.101614

  24. Elagamy HI, Essa EA, Nouh A, El Maghraby GM. Development and evaluation of rapidly dissolving buccal films of naftopidil: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2019;45:1695–706. https://doi.org/10.1080/03639045.2019.1656734.

    Article  CAS  PubMed  Google Scholar 

  25. Lakshmi PK, Lavanya D, Ali MH. Effect of synthetic super disintegrants and natural polymers in the preparation of donepezil hydrochloride fast disintegration films. Int Curr Pharm J. 2014;3:243–6. https://doi.org/10.3329/icpj.v3i3.17892.

    Article  CAS  Google Scholar 

  26. Koland M, Sandeep VP, Charyulu NR. Fast dissolving sublingual films of ondansetron hydrochloride: effect of additives on in vitro drug release and mucosal permeation. J Young Pharm. 2010;2:216–22. https://doi.org/10.4103/2F0975-1483.66790.

  27. Yarraguntla SR, Kumar TH, Ponnam C, Rao KV. Simultaneous estimation of solifenacin succinate and tamsulosin hydrochloride in combined dosage form by using first order derivative spectrophotometric method. Indian J Pharm Sci. 2021;83:331–5. https://doi.org/10.36468/pharmaceutical-sciences.777.

  28. Kalia V, Garg T, Rath G, Goyal AK. Development and evaluation of a sublingual film of the antiemetic granisetron hydrochloride. Artif Cells, Nanomed Biotechnol. 2016;44:842–6. https://doi.org/10.3109/21691401.2014.984303.

    Article  CAS  PubMed  Google Scholar 

  29. Balakrishna T, Vidyadhara S, Murthy TE, Ramu A, Sasidhar RL. Formulation and evaluation of esomeprazole fast dissolving buccal films. Asian J Pharm Clin Res. 2018;11:193–9. https://doi.org/10.22159/ajpcr.2018.v11i10.27321.

  30. Nair AB, Al-Dhubiab BE, Shah J, Jacob S, Saraiya V, Attimarad M, SreeHarsha N, Akrawi SH, Shehata TM. Mucoadhesive buccal film of almotriptan improved therapeutic delivery in rabbit model. Saudi Pharm J. 2020;28:201–9. https://doi.org/10.1016/j.jsps.2019.11.022.

    Article  CAS  PubMed  Google Scholar 

  31. Mostafa DA, Hashad AM, Ragab MF, Wagdy HA. Comparison between the pharmacokinetics data of ketorolac tromethamine wafer a novel drug delivery system and conventional ketorolac tromethamine tablets to enhance patient compliance using a new LC-MS/MS method. Bio Nano Science. 2020;10:745–57. https://link.springer.com/article/10.1007/s12668-020-00754-w .

  32. Patel D, Mohan S, Parmar D, Chaudhary S. Formulation and evaluation of mucoadhesive buccal films of esomeprazole magnesium trihydrate. Indian J Pharm Educ Res. 2013;47:70–6. https://doi.org/10.5530/ijper.47.3.11.

    Article  Google Scholar 

  33. Boateng JS, Matthews KH, Auffret AD, Humphrey MJ, Stevens HN, Eccleston GM. In vitro drug release studies of polymeric freeze-dried wafers and solvent-cast films using paracetamol as a model soluble drug. Int J Pharm. 2009;378:66–72. https://doi.org/10.1016/j.ijpharm.2009.05.038.

    Article  CAS  PubMed  Google Scholar 

  34. Kelodiya J, Shah SK, Tyagi CK, Budholiya P. Formulation, development of fast dissolving sublingual wafers of an antiemetic drug using film former. J Pharm Educ Res. 2021;10:71–8. https://doi.org/10.38164/AJPER/10.4.2021.71-78.

  35. Ganguly I, Abraham S, Bharath S, Madhavan V. Development of fast dissolving sublingual wafers of promethazine hydrochloride. Iranian J Pharm Sci. 2014;10:71–92.

    Google Scholar 

  36. Ammanage A, Rodriques P, Kempwade A, Hiremath R. Formulation and evaluation of buccal films of piroxicam co-crystals. Future J Pharm Sci. 2020;6:1–11. https://doi.org/10.1186/s43094-020-00033-1.

    Article  Google Scholar 

  37. Prajapati ST, Patel PB, Patel CN. Formulation and evaluation of sublingual tablets containing Sumatriptan succinate. Int J Pharm Invest. 2012;2:162–8. https://doi.org/10.4103/2230-973x.104400.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank KLE College of Pharmacy, Belagavi, Karnataka, for providing facilities to conduct this research work. The authors are thankful to Murli Krishna Pharma Pvt Ltd., Pune, and Destiny Chemicals, Gujarat, for providing gift sample of esomeprazole magnesium trihydrate (EMT) and hydroxypropyl methylcellulose (HPMC E-15), respectively.

Author information

Authors and Affiliations

Authors

Contributions

Krutuja Chougule: conceptualization, visualization, data curation, formal analysis, investigation, and writing—original draft. Panchaxari M. Dandagi: supervision and guidance. Sujay Hulyalkar: mentoring and review.

Corresponding author

Correspondence to Panchaxari M. Dandagi.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chougule, K., Dandagi, P.M. & Hulyalkar, S. Esomeprazole-Loaded Flash Release Sublingual Wafers: Formulation, Optimization, and Characterization. J Pharm Innov 18, 2013–2028 (2023). https://doi.org/10.1007/s12247-023-09768-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09768-9

Keywords

Navigation