Skip to main content

Advertisement

Log in

Characterization and biocompatibility evaluation of acellular rat skin scaffolds for skin tissue engineering applications

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Utilization of acellular scaffolds, extracellular matrix (ECM) without cell content, is growing in tissue engineering, due to their high biocompatibility, bioactivity ad mechanical support. Hence, the purpose of this research was to study the characteristics and biocompatibility of decellularized rat skin scaffolds using the osmotic shock method. First, the skin of male Wistar rats was harvested and cut into 1 × 1 cm2 pieces. Then, some of the harvested parts were subjected to the decellularization process by applying osmotic shock. Comparison of control and scaffold samples was conducted in order to assure cell elimination and ECM conservation by means of histological evaluations, quantification of biochemical factors, measurement of DNA amount, and photographing the ultrastructure of the samples by scanning electron microscopy (SEM). In order to evaluate stem cell viability and adhesion to the scaffold, adipose-derived mesenchymal stem cells (AD-MSCs) were seeded on the acellular scaffolds. Subsequently, MTT test and SEM imaging of the scaffolds containing cultured cells were applied. The findings indicated that in the decellularized scaffolds prepared by osmotic shock method, not only the cell content was removed, but also the ECM components and its ultrastructure were preserved. Also, the 99% viability and adhesion of AD-MSCs cultured on the scaffolds indicate the biocompatibility of the decellularized skin scaffold. In conclusion, decellularized rat skin scaffolds are biocompatible and appropriate scaffolds for future investigations of tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbaszadeh S, Asadi A, Zahri S, Abdolmaleki A, Mahmoudi F (2021) Does Phenytoin Have Neuroprotective Role and Affect Biocompatibility of Decellularized Sciatic Nerve Scaffold? Gene. Cell Tissue 8(1):102

    Google Scholar 

  • Abdolmaleki A, Ghayour M-B, Zahri S, Asadi A, Behnam-Rassouli M (2019) Preparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration. Tehran Univ Med J TUMS Publications 77(2):115–122

    Google Scholar 

  • Abdolmaleki A, Asadi A, Taghizadeh Momen L, Parsi Pilerood S (2020a) The role of neural tissue Engineering in the repair of nerve lesions. Neurosci J Shefaye Khatam 8(3):80–96

    Article  Google Scholar 

  • Abdolmaleki A, Ghayour M-B, Behnam-Rassouli M (2020b) Protective effects of acetyl-l-carnitine against serum and glucose deprivation-induced apoptosis in rat adipose-derived mesenchymal stem cells. Cell Tissue Banking 21:655–666

    Article  CAS  PubMed  Google Scholar 

  • Al-Ghadban S, Artiles M, Bunnell BA (2021) Adipose Stem Cells in Regenerative Medicine: Looking Forward. Front Bioeng Biotechnol 9:837464

    Article  PubMed  Google Scholar 

  • Allbritton-King JD, Kimicata M, Fisher JP (2021) Incorporating a structural extracellular matrix gradient into a porcine urinary bladder matrix‐based hydrogel dermal scaffold. J Biomedical Mater Res Part A 109(10):1893–1904

    Article  CAS  Google Scholar 

  • Ashtiani HRA, Akaberi M, Nilforoushzadeh MA, Farahani M (2018) Repairing injured skin: biologics, skin substitutes, and scaffolds. J Skin Stem Cell 5(4)

  • Balestrini JL, Gard AL, Gerhold KA, Wilcox EC, Liu A, Schwan J, Le AV, Baevova P, Dimitrievska S, Zhao L (2016) Comparative biology of decellularized lung matrix: implications of species mismatch in regenerative medicine. Biomaterials 102:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biedermann T, Boettcher-Haberzeth S, Reichmann E (2013) Tissue engineering of skin for wound coverage. Eur J Pediatr Surg 23(05):375–382

    Article  PubMed  Google Scholar 

  • Capella-Monsonís H, De Pieri A, Peixoto R, Korntner S, Zeugolis DI (2020) Extracellular matrix-based biomaterials as adipose-derived stem cell delivery vehicles in wound healing: a comparative study between a collagen scaffold and two xenografts. Stem Cell Res Ther 11(1):510

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang DK, Louis MR, Gimenez A, Reece EM (2019) The basics of integra dermal regeneration template and its expanding clinical applications. Seminars in plastic surgery. Thieme Medical Publishers

  • Chocarro-Wrona C, López‐Ruiz E, Perán M, Gálvez‐Martín P, Marchal J (2019) Therapeutic strategies for skin regeneration based on biomedical substitutes. J Eur Acad Dermatol Venereol 33(3):484–496

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Shih S, Khachemoune A (2020) Skin substitutes for acute and chronic wound healing: an updated review. J Dermatological Treat 31(6):639–648

    Article  CAS  Google Scholar 

  • De Waele J, Reekmans K, Daans J, Goossens H, Berneman Z, Ponsaerts P (2015) 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 41:122–131

    Article  PubMed  Google Scholar 

  • Dixit S, Baganizi DR, Sahu R, Dosunmu E, Chaudhari A, Vig K, Pillai SR, Singh SR, Dennis VA (2017) Immunological challenges associated with artificial skin grafts: available solutions and stem cells in future design of synthetic skin. J Biol Eng 11:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Erdag G, Morgan JR (2004) Allogeneic versus xenogeneic immune reaction to bioengineered skin grafts. Cell Transplant 13(6):701–712

    Article  PubMed  Google Scholar 

  • Ergun C, Parmaksiz M, Vurat MT, Elçin AE, Elçin YM (2022) Decellularized liver ECM-based 3D scaffolds: compositional, physical, chemical, rheological, thermal, mechanical, and in vitro biological evaluations. Int J Biol Macromol 200:110–123

    Article  CAS  PubMed  Google Scholar 

  • Esteban-Vives R, Young MT, Zhu T, Beiriger J, Pekor C, Ziembicki J, Corcos A, Rubin P, Gerlach JC (2016) Calculations for reproducible autologous skin cell-spray grafting. Burns 42(8):1756–1765

    Article  PubMed  Google Scholar 

  • Farrokhi A, Pakyari M, Nabai L, Pourghadiri A, Hartwell R, Jalili R, Ghahary A (2018) Evaluation of detergent-free and detergent-based methods for decellularization of murine skin. Tissue Eng Part A 24(11–12):955–967

    Article  CAS  PubMed  Google Scholar 

  • Foley E, Robinson A, Maloney M (2013) Skin substitutes and dermatology: a review. Curr Dermatology Rep 2(2):101–112

    Article  Google Scholar 

  • Fratini P, Rigoglio NN, Matias GSS, Carreira ACO, Rici REG, Miglino MA (2018) Canine placenta recellularized using yolk sac cells with vascular endothelial growth factor. Biores Open Access 7(1):101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich EE, Lanier ST, Niknam-Bienia S, Arenas GA, Rajendran D, Wertheim JA, Galiano RD (2018) Residual sodium dodecyl sulfate in decellularized muscle matrices leads to fibroblast activation in vitro and foreign body response in vivo. J Tissue Eng Regen Med 12(3):e1704–e1715

    Article  CAS  PubMed  Google Scholar 

  • Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GHAYOUR MB, ABDOLMALEKI A (2015) and M. FEREIDONI Role of extracellular matrix in peripheral nerve regeneration process

  • Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B (2018) Tissue engineered skin substitutes. Cell Biol Translat Med 3:143–188

    Google Scholar 

  • Greco K, Francis L, Somasundaram M, Greco G, English NR, Roether JA, Boccaccini AR, Sibbons P, Ansari T (2015) Characterisation of porcine dermis scaffolds decellularised using a novel non-enzymatic method for biomedical applications. J Biomater Appl 30(2):239–253

    Article  CAS  PubMed  Google Scholar 

  • Gruzdeva O, Akbasheva O, Dyleva YA, Antonova L, Matveeva V, Uchasova E, Fanaskova E, Karetnikova V, Ivanov S, Barbarash O (2017) Adipokine and cytokine profiles of epicardial and subcutaneous adipose tissue in patients with coronary heart disease. Bull Exp Biol Med 163(5):608–611

    Article  CAS  PubMed  Google Scholar 

  • Han W, Singh NK, Kim JJ, Kim H, Kim BS, Park JY, Jang J, Cho D-W (2019) Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials 224:119496

    Article  CAS  PubMed  Google Scholar 

  • Hart CE, Loewen-Rodriguez A, Lessem J (2012) Dermagraft: use in the treatment of chronic wounds. Adv Wound care 1(3):138–141

    Article  Google Scholar 

  • Hilmi ABM, Halim AS (2015) Vital roles of stem cells and biomaterials in skin tissue engineering. World J stem Cells 7(2):428

    Article  Google Scholar 

  • Hoshiba T, Yunoki S (2023) Comparison of decellularization protocols for cultured cell-derived extracellular matrix-Effects on decellularization efficacy, extracellular matrix retention, and cell functions. J Biomed Mater Res B Appl Biomater 111(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Irfan-Maqsood M, Hemmati Sadeghi S (2013) Developments toward an Ideal skin substitute: a Commentary. J Cell Mol Res 5(2):87–91

    Google Scholar 

  • Janson IA, Putnam AJ (2015) Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A 103(3):1246–1258

    Article  PubMed  Google Scholar 

  • Kallis PJ, Friedman AJ, Lev-Tov H (2018) A guide to tissue-engineered skin substitutes. J Drugs Dermatology JDD 17(1):57–64

    Google Scholar 

  • Kamalvand M, Biazar E, Daliri-Joupari M, Montazer F, Rezaei-Tavirani M, Heidari-Keshel S (2021) Design of a decellularized fish skin as a biological scaffold for skin tissue regeneration. Tissue Cell 71:101509

    Article  CAS  PubMed  Google Scholar 

  • Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard‐Blum S, Schmelzer CE (2021) A guide to the composition and functions of the extracellular matrix. FEBS J 288(24):6850–6912

    Article  CAS  PubMed  Google Scholar 

  • Kelangi SS, Theocharidis G, Veves A, Austen WG, Sheridan R, Goverman J, Bei M (2020) “On skin substitutes for wound healing: Current products, limitations, and future perspectives.“ TECHNOLOGY 08(01n02): 8–14

  • Koo MA, Jeong H, Hong SH, Seon GM, Lee MH, Park JC (2022) Preconditioning process for dermal tissue decellularization using electroporation with sonication. " Regen Biomater 9(1):rbab071

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Gangwar AK, Mathew DD, Ahamad RA, Saxena AC, Kumar N (2013) Acellular dermal matrix for Surgical repair of ventral hernia in horses. J Equine Veterinary Sci 33(4):238–243

    Article  Google Scholar 

  • Kumar V, Gangwar AK, Kumar N (2016) Evaluation of the murine dermal matrix as a biological mesh in dogs. Proc Natl Acad Sci India Sect B Biolog Sci 86:953–960

    Article  Google Scholar 

  • Kumar S, Kang HJ, Berthiaume F (2019) Scaffolds for epidermal tissue engineering. Handbook of tissue engineering scaffolds: volume two. Elsevier, pp 173–191

    Book  Google Scholar 

  • Losquadro WD (2017) Anatomy of the skin and the pathogenesis of nonmelanoma skin cancer. Facial Plast Surg Clin 25(3):283–289

    Article  Google Scholar 

  • Marquet F, Grandclaude M-C, Ferrari E, Champmartin C (2019) Capacity of an in vitro rat skin model to predict human dermal absorption: influences of aging and anatomical site. Toxicol in Vitro 61:104623

    Article  CAS  PubMed  Google Scholar 

  • Martins A, Matias GdSS, Batista V, Miglino MA, Fratini P (2020) Wistar rat dermis recellularization. Res Vet Sci 131:222–231

    Article  CAS  PubMed  Google Scholar 

  • Masson-Meyers DS, Andrade TA, Caetano GF, Guimaraes FR, Leite MN, Leite SN, Frade MAC (2020) Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol 101(1–2):21–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A (2020) Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci 21(15):5447

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng Q, Shen C (2018) Construction of low contracted 3D skin equivalents by genipin cross-linking. Exp Dermatol 27(10):1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL, Kargozar S, Amini N, Hamblin MR, Mozafari M, Samadikuchaksaraei A (2016) Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. " Acta Biomater 45:234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura KK, Moraes AR, Miranda AC, Greco R, Ansari T, Sibbons P, Greco KV, Oliani SM (2016) Mechanisms underlying heterologous skin scaffold-mediated tissue remodeling. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix: tools and insights for the omics era. Matrix Biol 49:10–24

    Article  CAS  PubMed  Google Scholar 

  • Nakhi MB, Al Saqqa B (2020) The use of MatriDerm® and skin graft for reconstruction of complex wounds. Wounds 7(1)

  • Narciso M, Ulldemolins A, Júnior C, Otero J, Navajas D, Farré R, Gavara N, Almendros I (2022) Novel decellularization method for tissue slices. Front Bioeng Biotechnol 10

  • Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh A-M, Majidi Zolbin M (2022) Decellularization in tissue Engineering and Regenerative Medicine: evaluation, modification, and application methods. Front Bioeng Biotechnol 10

  • Nicholas MN, Jeschke MG, Amini-Nik S (2016) Methodologies in creating skin substitutes. Cell Mol Life Sci 73(18):3453–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L (2020) 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules 21(6):1968–1994

    Article  CAS  PubMed  Google Scholar 

  • Niczyporuk M (2018) Rat skin as an experimental model in medicine. Progr Health Sci 8:223–228

    Article  Google Scholar 

  • Oualla-Bachiri W, Fernández-González A, Quiñones-Vico MI, Arias-Santiago S (2020) From grafts to human bioengineered vascularized skin substitutes. Int J Mol Sci 21(21):8197

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabbani M, Zakian N, Alimoradi N (2021) Contribution of physical methods in decellularization of animal tissues. J Med Signals Sens 11(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghavan SS, Woon CY, Kraus A, Megerle K, Pham H, Chang J (2012) Optimization of human tendon tissue engineering: synergistic effects of growth factors for use in tendon scaffold repopulation. Plast Reconstr Surg 129(2):479–489

    Article  CAS  PubMed  Google Scholar 

  • Rana D, Zreiqat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M (2017) Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med 11(4):942–965

    Article  CAS  PubMed  Google Scholar 

  • Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK (2021) A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 13(7):1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: a cellular perspective. Physiol Rev 99(1):665–706

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7(43):229–258

    Article  CAS  PubMed  Google Scholar 

  • Stojic M, López V, Montero A, Quílez C, de Aranda Izuzquiza G, Vojtova L, Jorcano JL, Velasco D (2019) Skin tissue engineering. Biomaterials for Skin Repair and Regeneration, Elsevier, NY, pp 59–99

    Google Scholar 

  • Urbanczyk M, Layland SL, Schenke-Layland K (2020) The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol 85–86:1–14

    Article  PubMed  Google Scholar 

  • Varkey M, Ding J, Tredget EE (2015) Advances in skin substitutes—potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater 6(3):547–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warby R, Maani CV (2019) Burns classification

  • Xing H, Lee H, Luo L, Kyriakides TR (2020) Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 42:107421

    Article  CAS  PubMed  Google Scholar 

  • Yousef H, Alhajj M, Sharma S (2017) Anatomy, skin (integument), epidermis

  • Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C (2022) Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater 10:15–31

    CAS  PubMed  Google Scholar 

  • Zimoch J, Zielinska D, Michalak-Micka K, Rütsche D, Böni R, Biedermann T, Klar AS (2021) Bio-engineering a prevascularized human tri-layered skin substitute containing a hypodermis. Acta Biomater 134:215–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Council of University of Mohaghegh Ardabili for the financial support of this study.

Funding

Research Council of University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Contributions

A, A, and Z: participated in research design; T: conducted experiments; A: performed data analysis; T and A: wrote or contributed to the writing of the manuscript.

Corresponding author

Correspondence to Arash Abdolmaleki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards All animal experiments were carried out in accordance with the European Communities Council directive of 24 November 1986(86/609/EEC) and in accordance with local University of Mohaghegh Ardabili (UMA) committee for human and animal ethics.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momen, L.T., Abdolmaleki, A., Asadi, A. et al. Characterization and biocompatibility evaluation of acellular rat skin scaffolds for skin tissue engineering applications. Cell Tissue Bank 25, 217–230 (2024). https://doi.org/10.1007/s10561-023-10109-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-023-10109-w

Keywords

Navigation