Skip to main content
Log in

The Influence of Functional Additives on the Mechanical Properties of ABS Plastic

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

The effect of functional additives—short carbon fibers and magnetite—on the mechanical properties of ABS plastic has been studied. It has been established that the maximum increase in the mechanical strength of an ABS plastic sample is observed with the introduction of 3 wt % magnetite. It is shown that the combined introduction of short carbon fiber and magnetite led to a 25% increase in strength compared to pure ABS. The effect of additives on the change in the glass-transition temperature as an important parameter of polymer composites used in additive manufacturing has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. Dul, B. J. A. Gutierrez, A. Pegoretti, J. Alvarez-Quintana, and L. Fambri, “3D Printing of ABS nanocomposites. Comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties,” J. Mater. Sc. Technol. 121, 52–66 (2022). https://doi.org/10.1016/j.jmst.2021.11.064

  2. S. Dul, L. Fambri, and A. Pegoretti, “Fused deposition modelling with ABS–Graphene nanocomposites,” Composites Part A 85, 181–191 (2016). https://doi.org/10.1016/j.compositesa.2016.03.013

    Article  CAS  Google Scholar 

  3. H. K. Sezer and O. Eren, “FDM 3D printing of MWCNTre-inforced ABS nano-composite parts with enhanced mechanical and electrical properties,” J. Manuf. Proc. 37, 339–347 (2019). https://doi.org/10.1016/j.jmapro.2018.12.004

  4. Z. C. Kennedy, J. F. Christ, K. A. Evans, B. W. Arey, L. E. Sweet, M. G. Warner, R. L. Erikson, and C. A. Barrett, “3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform,” Nanoscale 9, 5458–5466 (2017). https://doi.org/10.1039/C7NR00617A

    Article  CAS  PubMed  Google Scholar 

  5. E. V. Kornilitsina, E. A. Lebedeva, S. A. Astaf’eva, D. K. Trukhinov, and P. Badica, “Soft magnetic composites of carbon fibers decorated with magnetite in an epoxy matrix,” Soft Mater. 20, 559–567 (2021). https://doi.org/10.1080/1539445X.2021.2001527

  6. T. Sonsalla, A. L. Moore, A. D. Radadia, and L. Weiss, “Printer orientation effects and performance of novel 3-D printable acrylonitrile butadiene styrene (abs) composite filaments for thermal enhancement,” Polym. Test. 80, 106125 (2019). https://doi.org/10.1016/j.polymertesting.2019.106125

    Article  CAS  Google Scholar 

  7. S. A. Khan and I. Lazoglu, “Development of additively manufacturable and electrically conductive graphite-polymer composites,” Prog. Addit. Manuf. 5, 153 (2020). https://doi.org/10.1007/s40964-019-00102-9

    Article  Google Scholar 

  8. S. Sayyar, D. L. Officer, and G. G. Wallace, “Fabrication of 3D structures from graphene-based biocomposites,” J. Mater. Chem. 5, 3462. https://doi.org/10.1039/C6TB02442D

  9. X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, and Z. Sun, “3D printable graphene composite,” Sci. Rep. 5, 11181 (2015). https://doi.org/10.1038/srep11181

    Article  PubMed  PubMed Central  Google Scholar 

  10. B. Utela, D. Storti, R. Anderson, and M. Ganter, “A review of process development steps for new material systems in three dimensional printing (3DP),” J. Manuf. Proc. 10, 96–104 (2008). https://doi.org/10.1016/j.jmapro.2009.03.002

  11. E. V. Kornilitsina, E. A. Lebedeva, S. A. Astaf’eva, and D. K. Trukhinov, “Modification of carbon fiber by magnetite particles,” IOP Conf. Ser.: Mater. Sci. Eng. 1047, 012051 (2021). https://doi.org/10.1088/1757-899X/1047/1/012051

  12. E. A. Lebedeva, S. A. Astaf’eva, T. S. Istomina, D. K. Trukhinov, A. Sh. Shamsutdinov, V. N. Strel’nikov, A. I. Kukharenko, and I. S. Zhidkov, “Novel approach to recycled carbon fiber suitability assessment for additive technologies,” Appl. Surf. Sci. 602, 154251 (2022). https://doi.org/10.1016/j.apsusc.2022.154251

  13. E. A. Lebedeva, S. A. Astaf’eva, T. S. Istomina, D. K. Trukhinov, G. V. Il’inykh, and N. N. Slyusar’, “Application of low-temperature solvolysis for processing of reinforced carbon plastics,” Russ. J. Appl. Chem. 93, 845–853 (2020). https://doi.org/10.1134/S1070427220060117

    Article  CAS  Google Scholar 

  14. K. M. M. Billah, F. A. R. Lorenzana, N. L. Martinez, R. B. Wicker, and D. Espalin, “Thermomechanical characterization of short carbon fiber and short glass fiber-reinforced ABS used in large format additive manufacturing,” Addit. Manuf. 35, 101299 (2020). https://doi.org/10.1016/j.addma.2020.101299

    Article  CAS  Google Scholar 

  15. S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon 49, 198–205 (2011). https://doi.org/10.1016/j.carbon.2010.09.004

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use “Investigations of Materials and Substances” of the Principal Federal Research Center of the Ural Branch of the Russian Academy of Sciences.

Funding

The study was carried out with the financial support of the Government of Perm krai within the framework of scientific project no. С-26/702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kornilitsina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornilitsina, E.V., Lebedeva, E.A., Trukhinov, D.K. et al. The Influence of Functional Additives on the Mechanical Properties of ABS Plastic. Polym. Sci. Ser. D 16, 572–575 (2023). https://doi.org/10.1134/S1995421223030140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421223030140

Keywords:

Navigation