Skip to main content
Log in

Role of Interstitial Solid Solutions in the Formation of the Active Component of Supported Palladium Catalysts for the Selective Hydrogenation of Acetylene to Ethylene

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The concepts of the effect of the adsorption of the reaction medium components on the selective hydrogenation of acetylene to ethylene under the action of supported palladium catalysts have been discussed. The role of interstitial solid solutions of carbon and hydrogen in palladium, which are formed upon contact of the catalyst with the reaction medium, in the occurrence of mass transfer processes between the surface and the subsurface layer of the active component has been shown. The ratio of activation barriers to ethylene desorption/adsorption processes, which determines the acetylene hydrogenation selectivity, can vary depending on the structure of palladium nanoparticles and the electronic state of Pd. In addition, changes in the electronic state affect the energy of the activated desorption of ethylene from palladium particles, and their structural features determine the energy of the activated adsorption and subsequent hydrogenation of ethylene to ethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Nikolaev, S.A., Zanaveskin, L.N., Smirnov, V.V., Aver’yanov, V.A., and Zanaveskin, K.L., Russ. Chem. Rev., 2009, vol. 78, no. 3, pp. 231–247. https://doi.org/10.1070/RC2009v078n03ABEH003893

    Article  CAS  Google Scholar 

  2. Ellert, O.G., Tsodikov, M.V., Nikolaev, S.A., and Novotortsev, V.M., Russ. Chem. Rev., 2014, vol. 83, no. 8, pp. 718–732. https://doi.org/10.1070/RC2014v083n08ABEH004432

  3. Ravanchi, M.T., Sahebdelfar, S., and Komeili, S., Rev. Chem. Eng., 2018, vol. 34, no. 2, pp. 215–237. https://doi.org/10.1515/revce-2016-0036

    Article  CAS  Google Scholar 

  4. McCue, A.J. and Anderson, J.A., Front. Chem. Sci. Eng., 2015, vol. 9, no. 2, pp. 142–153. https://doi.org/10.1007/s11705-015-1516-4

    Article  CAS  Google Scholar 

  5. Liao, F., Lo, T.W.B., and Tsang, S.C.E., ChemCatChem, 2015, vol. 7, no. 14, pp. 1998–2014. https://doi.org/10.1002/cctc.201500245

    Article  CAS  Google Scholar 

  6. Osswald, J., Kovnir, K., Armbrüster, M., Giedigkeit, R., Jentoft, R.E., Wild, U., Grin, Y., and Schlögl, R., J. Catal., 2008, vol. 258, no. 1, pp. 219–227. https://doi.org/10.1016/j.jcat.2008.06.014

    Article  CAS  Google Scholar 

  7. Osswald, J., Giedigkeit, R., Jentoft, R.E., Armbrüster, M., Girgsdies, F., Kovnir, K., Ressler, T., Grin, Y., and Schlögl, R., J. Catal., 2008, vol. 258, no. 1, pp. 210–218. https://doi.org/10.1016/j.jcat.2008.06.013

    Article  CAS  Google Scholar 

  8. Kovnir, K., Armbrüster, M., Teschner, D., Venkov, T.V., Szentmiklósi, L., Jentoft, F.C., Knop-Gericke, A., Grin, Yu., and Schlögl, R., Surf. Sci., 2009, vol. 603, nos. 10–12, pp. 1784–1792. https://doi.org/10.1016/j.susc.2008.09.058

  9. Kumar, N. and Ghosh, P., Surf. Sci., 2016, vol. 644, pp. 69–79. https://doi.org/10.1016/j.susc.2015.09.005

    Article  CAS  Google Scholar 

  10. Borodziński, A. and Bond, G.C., Catal. Rev., 2008, vol. 50, no. 3, pp. 379–469. https://doi.org/10.1080/01614940802142102

    Article  CAS  Google Scholar 

  11. Glyzdova, D.V., Afonasenko, T.N., Khramov, E.V., Leont’eva, N.N., Trenikhin, M.V., Prosvirin, I.P., Bukhtiyarov, A.V., and Shlyapin, D.A., Top. Catal., 2020, vol. 63, no. 1, pp. 139–151. https://doi.org/10.1007/s11244-019-01215-9

    Article  CAS  Google Scholar 

  12. Al-Ammar, A.S. and Webb, G., J. Chem. Soc., Faraday Trans. 1, 1979, vol. 75, pp. 1900–1911. https://doi.org/10.1039/F19797501900

    Article  CAS  Google Scholar 

  13. Borodziński, A. and Gołȩbiowski, A., Langmuir, 1997, vol. 13, no. 5, pp. 883–887. https://doi.org/10.1021/la951004y

    Article  Google Scholar 

  14. Bos, A.N.R. and Westerterp, K.R., Chem. Eng. Process., 1993, vol. 32, no. 1, pp. 1–7. https://doi.org/10.1016/0255-2701(93)87001-B

    Article  CAS  Google Scholar 

  15. Tysoe, W.T., Nyberg, G.L., and Lambert, R.M., J. Phys. Chem., 1986, vol. 90, no. 14, pp. 3188–3192. https://doi.org/10.1021/j100405a028

    Article  CAS  Google Scholar 

  16. Stuve, E.M. and Madix, R.J., J. Phys. Chem., 1985, vol. 89, no. 1, pp. 105–112. https://doi.org/10.1021/j100247a026

    Article  CAS  Google Scholar 

  17. Leviness, S., Nair, V., Weiss, A.H., Schay, Z., and Guczi, L., J. Mol. Catal., 1984, vol. 25, nos. 1–3, pp. 131–140. https://doi.org/10.1016/0304-5102(84)80037-1

  18. Gigola, C.E., Aduriz, H.R., and Bodnariuk, P., Appl. Catal., 1986, vol. 27, no. 1, pp. 133–144. https://doi.org/10.1016/S0166-9834(00)81052-0

    Article  CAS  Google Scholar 

  19. Sá, J., Arteaga, G.D., Daley, R.A., Bernardi, J., and Anderson, J.A., J. Phys. Chem. B, 2006, vol. 110, no. 34, pp. 17090–17095. https://doi.org/10.1021/jp062205l

    Article  CAS  PubMed  Google Scholar 

  20. Crespo-Quesada, M., Yoon, S., Jin, M., Prestianni, A., Cortese, R., Cárdenas-Lizana, F., Duca, D., Weidenkaff, A., and Kiwi-Minsker, L., J. Phys. Chem. C, 2015, vol. 119, no. 2, pp. 1101–1107. https://doi.org/10.1021/jp510347r

    Article  CAS  Google Scholar 

  21. Al-Ammar, A.S. and Webb, G., J. Chem. Soc., Faraday Trans. 1, 1978, vol. 74, pp. 195–205. https://doi.org/10.1039/F19787400195

    Article  CAS  Google Scholar 

  22. Al-Ammar, A.S. and Webb, G., J. Chem. Soc., Faraday Trans. 1, 1978, vol. 74, pp. 657–664. https://doi.org/10.1039/F19787400657

    Article  CAS  Google Scholar 

  23. Den Hartog, A.J., Deng, M., Jongerius, F., and Ponec, V., J. Mol. Catal., 1990, vol. 60, no. 1, pp. 99–108. https://doi.org/10.1016/0304-5102(90)85071-O

    Article  CAS  Google Scholar 

  24. Guczi, L., LaPierre, R.B., Weiss, A.H., and Biron, E., J. Catal., 1979, vol. 60, no. 1, pp. 83–92. https://doi.org/10.1016/0021-9517(79)90070-8

    Article  CAS  Google Scholar 

  25. Margitfalvi, J., Guczi, L., and Weiss, A.H., J. Catal., 1981, vol. 72, no. 2, pp. 185–198. https://doi.org/10.1016/0021-9517(81)90001-4

    Article  CAS  Google Scholar 

  26. Margitfalvi, J., Guczi, L., and Weiss, A.H., React. Kinet. Catal. Lett., 1981, vol. 15, no. 4, pp. 475–479. https://doi.org/10.1007/BF02074152

    Article  Google Scholar 

  27. Bal'zhinimaev, B.S., Paukshtis, E.A., and Kovalev, E.V., Catal. Ind., 2020, vol. 12, no. 1, pp. 56–65. https://doi.org/10.1134/S207005042001002X

    Article  Google Scholar 

  28. Horiuti, I. and Polanyi, M., Trans. Faraday Soc., 1934, vol. 30, pp. 1164–1172. https://doi.org/10.1039/TF9343001164

    Article  Google Scholar 

  29. Sheth, P.A., Neurock, M., and Smith, C.M., J. Phys. Chem. B, 2003, vol. 107, no. 9, pp. 2009–2017. https://doi.org/10.1021/jp021342p

    Article  CAS  Google Scholar 

  30. Bond, G.C. and Wells, P.B., J. Catal., 1965, vol. 4, no. 2, pp. 211–219. https://doi.org/10.1016/0021-9517(65)90011-4

    Article  CAS  Google Scholar 

  31. Bond, G.C. and Wells, P.B., J. Catal., 1966, vol. 5, no. 1, pp. 65–73. https://doi.org/10.1016/S0021-9517(66)80126-4

    Article  CAS  Google Scholar 

  32. Bond, G.C. and Wells, P.B., J. Catal., 1966, vol. 5, no. 3, pp. 419–427. https://doi.org/10.1016/S0021-9517(66)80061-1

    Article  CAS  Google Scholar 

  33. Arnett, R.L. and Crawford, Jr.B.L., J. Chem. Phys., 1950, vol. 18, no. 1, pp. 118–126. https://doi.org/10.1063/1.1747428

    Article  CAS  Google Scholar 

  34. Molero, H., Bartlett, B.F., and Tysoe, W.T., J. Catal., 1999, vol. 181, no. 1, pp. 49–56. https://doi.org/10.1006/jcat.1998.2294

    Article  CAS  Google Scholar 

  35. Bond, G.C., Catalysis by Metals, London, New York: Academic Press, 1962.

    Google Scholar 

  36. Medlin, J.W. and Allendorf, M.D., J. Phys. Chem. B, vol. 107, no. 1, pp. 217–223. https://doi.org/10.1021/jp026555t

  37. Basaran, D., Aleksandrov, H.A., Chen, Z.-X., Zhao, Z., and Rösch, N., J. Mol. Catal. A: Chem., 2011, vol. 344, nos. 1–2, pp. 37–46. https://doi.org/10.1016/j.molcata.2011.04.019

  38. Mittendorfer, F., Thomazeau, C., Raybaud, P., and Toulhoat, H., J. Phys. Chem. B, 2003, vol. 107, no. 44, pp. 12287–12295. https://doi.org/10.1021/jp035660f

    Article  CAS  Google Scholar 

  39. Mei, D., Sheth, P.A., Neurock, M., and Smith, C.M., J. Catal., 2006, vol. 242, no. 1, pp. 1–15. https://doi.org/10.1016/j.jcat.2006.05.009

    Article  CAS  Google Scholar 

  40. Gabasch, H., Hayek, K., Klötzer, B., Knop-Gericke, A., and Schlögl, R., J. Phys. Chem. B, 2006, vol. 110, no. 10, pp. 4947–4952. https://doi.org/10.1021/jp056765g

    Article  CAS  PubMed  Google Scholar 

  41. Shaikhutdinov, S., Heemeier, M., Bäumer, M., Lear, T., Lennon, D., Oldman, R.J., Jackson, S.D., and Freund, H.-J., J. Catal., 2001, vol. 200, no. 2, pp. 330–339. https://doi.org/10.1006/jcat.2001.3212

    Article  CAS  Google Scholar 

  42. Moskaleva, L.V., Chen, Z.-X., Aleksandrov, H.A., Mohammed, A.B., Sun, Q., and Rösch, N., J. Phys. Chem. C, 2009, vol. 113, no. 6, pp. 2512–2520. https://doi.org/10.1021/jp8082562

    Article  CAS  Google Scholar 

  43. Huang, F., Deng, Y., Chen, Y., Cai, X., Peng, M., Jia, Z., Ren, P., Xiao, D., Wen, X., Wang, N., Liu, H., and Ma, D., J. Am. Chem. Soc., 2018, vol. 140, no. 41, pp. 13142–13146. https://doi.org/10.1021/jacs.8b07476

    Article  CAS  PubMed  Google Scholar 

  44. Dunphy, J.C., Rose, M., Behler, S., Ogletree, D.F., Salmeron, M., and Sautet, P., Phys. Rev. B, 1998 vol. 57, no. 20, pp. R12705–R12708. https://doi.org/10.1103/PhysRevB.57.R12705

    Article  CAS  Google Scholar 

  45. Ryndin, Yu.A., Nosova, L.V., Boronin, A.I., and Chuvilin, A.L., Appl. Catal., 1988, vol. 42, no. 1, pp. 131–141. https://doi.org/10.1016/S0166-9834(00)80081-0

    Article  CAS  Google Scholar 

  46. Ryndin, Yu.A., Stenin, M.V., Boronin, A.I., Bukhtiyarov, V.I., and Zaikovskii, V.I., Appl. Catal., 1989, vol. 54, no. 1, pp. 277–288. https://doi.org/10.1016/S0166-9834(00)82370-2

    Article  CAS  Google Scholar 

  47. Kim, S.K., Kim, C., Lee, J.H., Kim, J., Lee, H., and Moon, S.H., J. Catal., 2013, vol. 306, pp. 146–154. https://doi.org/10.1016/j.jcat.2013.06.018

    Article  CAS  Google Scholar 

  48. Chung, J., Kim, C., Jeong, H., Yu, T., Binh, D.H., Jang, J., Lee, J., Kim, B.M., and Lim, B., Chem.—Asian J., 2013, vol. 8, no. 5, pp. 919–925. https://doi.org/10.1002/asia.201201166

    Article  CAS  PubMed  Google Scholar 

  49. Yarulin, A.E., Crespo-Quesada, R.M., Egorova, E.V., and Kiwi-Minsker, L.L., Kinet. Catal., 2012, vol. 53, no. 2, pp. 253–261. https://doi.org/10.1134/S0023158412020152

    Article  CAS  Google Scholar 

  50. He, Y.-F., Feng, J.-T., Du, Y.-Y., and Li, D.-Q., ACS Catal., 2012, vol. 2, no. 8, pp. 1703–1710. https://doi.org/10.1021/cs300224j

    Article  CAS  Google Scholar 

  51. Gulyaeva, Yu.K., Kaichev, V.V., Zaikovskii, V.I., Kovalyov, E.V., Suknev, A.P., and Bal’zhinimaev, B.S., Catal. Today, 2015, vol. 245, pp. 139–146. https://doi.org/10.1016/j.cattod.2014.05.028

    Article  CAS  Google Scholar 

  52. Glyzdova, D.V., Khramov, E.V., Smirnova, N.S., Prosvirin, I.P., Bukhtiyarov, A.V., Trenikhin, M.V., Gulyaeva, T.I., Vedyagin, A.A., Shlyapin, D.A., and Lavrenov, A.V., Appl. Surf. Sci., 2019, vol. 483, pp. 730–741. https://doi.org/10.1016/j.apsusc.2019.03.215

    Article  CAS  Google Scholar 

  53. Glyzdova, D.V., Afonasenko, T.N., Khramov, E.V., Leont’eva, N.N., Trenikhin, M.V., Kremneva, A.M., and Shlyapin, D.A., Mol. Catal., 2021, vol. 511, article no. 111717. https://doi.org/10.1016/j.mcat.2021.111717

    Article  CAS  Google Scholar 

  54. Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., and Nørskov, J.K., Angew. Chem., 2008, vol. 120, no. 48, pp. 9439–9442. https://doi.org/10.1002/ange.200802844

    Article  Google Scholar 

  55. Teschner, D., Borsodi, J., Wootsch, A., Révay, Z., Hävecker, M., Knop-Gericke, A., Jackson, S.D., and Schlögl, R., Science, 2008, vol. 320, no. 5872, pp. 86–89. https://doi.org/10.1126/science.1155200

    Article  CAS  PubMed  Google Scholar 

  56. Stacchiola, D. and Tysoe, W.T., Surf. Sci., 2003, vol. 540, nos. 2–3, pp. L600–L604. https://doi.org/10.1016/S0039-6028(03)00848-3

  57. Ludwig, W., Savara, A., Dostert, K.H., and Schauermann, S., J. Catal., 2011, vol. 284, no. 2, pp. 148–156. https://doi.org/10.1016/j.jcat.2011.10.010

    Article  CAS  Google Scholar 

  58. Wood, J., Alldrick, M.J., Winterbottom, J.M., Stitt, E.H., and Bailey, S., Catal. Today, 2007, vol. 128, nos. 1–2, pp. 52–62. https://doi.org/10.1016/j.cattod.2007.04.016

  59. Larsson, M., Jansson, J., and Asplund, S., J. Catal., 1998, vol. 178, no. 1, pp. 49–57. https://doi.org/10.1006/jcat.1998.2128

    Article  CAS  Google Scholar 

  60. Sárkány, A., Horváth, A., and Beck, A., Appl. Catal., A, 2002, vol. 229, nos. 1–2, pp. 117–125. https://doi.org/10.1016/S0926-860X(02)00020-0

  61. Kozlov, S.M., Yudanov, I.V., Aleksandrov, H.A., and Rösch, N., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 46, pp. 10955–10963. https://doi.org/10.1039/B916855A

    Article  CAS  PubMed  Google Scholar 

  62. Cao, Y., Ge, X., Li, Y., Si, R., Sui, Z., Zhou, J., Duan, X., and Zhou, X., Engineering, 2021, vol. 7, no. 1, pp. 103–110. https://doi.org/10.1016/j.eng.2020.06.023

    Article  CAS  Google Scholar 

  63. Neyman, K.M. and Schauermann, S., Angew. Chem., Int. Ed., 2010, vol. 49, no. 28, pp. 4743–4746. https://doi.org/10.1002/anie.200904688

    Article  CAS  Google Scholar 

  64. Benavidez, A.D., Burton, P.D., Nogales, J.L., Jenkins, A.R., Ivanov, S.A., Miller, J.T., Karim, A.M., and Datye, A.K., Appl. Catal., A, 2014, vol. 482, pp. 108–115. https://doi.org/10.1016/j.apcata.2014.05.027

  65. Teschner, D., Révay, Z., Borsodi, J., Hävecker, M., Knop-Gericke, A., Schlögl, R., Milroy, D., Jackson, D., Torres, D., and Sautet, P., Angew. Chem., 2008, vol. 120, no. 48, pp. 9414–9418. https://doi.org/10.1002/ange.200802134

    Article  Google Scholar 

  66. Sautet, P. and Cinquini, F., ChemCatChem, 2010, vol. 2, no. 6, pp. 636–639. https://doi.org/10.1002/cctc.201000056

    Article  CAS  Google Scholar 

  67. Yang, B., Burch, R., Hardacre, C., Headdock, G., and Hu, P., J. Catal., 2013, vol. 305, pp. 264–276. https://doi.org/10.1016/j.jcat.2013.05.027

    Article  CAS  Google Scholar 

  68. Yang, B., Burch, R., Hardacre, C., Hu, P., and Hughes, P., J. Phys. Chem. C, 2014, vol. 118, no. 7, pp. 3664–3671. https://doi.org/10.1021/jp412255a

    Article  CAS  Google Scholar 

  69. Yang, B., Burch, R., Hardacre, C., Hu, P., and Hughes, P., Surf. Sci., 2016, vol. 646, pp. 45–49. https://doi.org/10.1016/j.susc.2015.07.015

    Article  CAS  Google Scholar 

  70. Chen, T., Foo, C., and Tsang, S.C.E., Chem. Sci., 2021, vol. 12, no. 2, pp. 517–532. https://doi.org/10.1039/D0SC06496C

    Article  CAS  Google Scholar 

  71. Beck, M., Ellner, M., and Mittemeijer, E.J., Acta Mater., 2001, vol. 49, no. 6, pp. 985–993. https://doi.org/10.1016/S1359-6454(00)00399-2

    Article  CAS  Google Scholar 

  72. Reference data. Properties of matter atoms. Radii of matter atoms. www.fxyz.ru. Cited July 5, 2022

  73. Ellis, I.T., Wolf, E.H., Jones, G., Lo, B., Li, M.M.J., York, A.P., and Tsang, S.C.E., Chem. Commun., 2017, vol. 53, no. 3, pp. 601–604. https://doi.org/10.1039/C6CC08404D

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state task to Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences (project no. AAAA-A21-121011390011-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Shlyapin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyapin, D.A., Glyzdova, D.V., Afonasenko, T.N. et al. Role of Interstitial Solid Solutions in the Formation of the Active Component of Supported Palladium Catalysts for the Selective Hydrogenation of Acetylene to Ethylene. Catal. Ind. 15, 297–312 (2023). https://doi.org/10.1134/S207005042303008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005042303008X

Keywords:

Navigation