Skip to main content
Log in

An Analytical-Numerical Coupled Model for an Aeroelastic Analysis of Tail Flutter Based on Bending–Torsional Coupling

  • Published:
Mechanics of Composite Materials Aims and scope

The aeroelastic instability is the mutual interaction of aerodynamic, structural, and inertial forces that can cause the flutter in aircraft structures. In this research, applying the coupling of a flutter with two degrees of freedom and the finite-element method, to a symmetric airfoil section of an aircraft tail, the flutter speed is investigated. The geometry and thickness of tail skin and isotropic and layups of composite materials are effective parameters of the torsional and bending stiffnesses of the airfoil section studied using the finite-element method. Lagrange’s equation is used to analyze the aeroelastic instability of the tail. Finally, the impact of the effective parameters on the flutter speed and instability of tail are discussed. The results obtained show that, at the same thickness, the flutter speed of angle-ply layups is higher than of quasi-isotropic composite laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. P. Omenzetter, K. Wild, and Y. Fujino, “Suppression of wind-induced instabilities of a long span bridge by a passive deck–flaps control system,” Part I: Formulation, J. Wind Eng. Industrial Aerodynamics, 87, No. 1, 61-79 (2000).

    Article  Google Scholar 

  2. F. Mastroddi, M. Tozzi, and V. Capannolo, “On the use of geometry design variables in the MDO analysis of wing structures with aeroelastic constraints on stability and response,” Aerospace Sci. Technol., 15, No. 3, 196-206 (2011).

    Article  Google Scholar 

  3. J. K. S. Dillinger, T. Klimmek, M. M. Abdalla, and Z. Gürdal, “Stiffness optimization of composite wings with aeroelastic constraints,” J. Aircraft, 50, No. 4, 1159-1168 (2013).

    Article  Google Scholar 

  4. O. Stodieck, J. E. Cooper, P. M. Weaver, and P. Kealy, “Aeroelastic tailoring of a representative wing box using tow-steered composites,” AIAA J., 55, No. 4, 1425-1439 (2017).

    Article  Google Scholar 

  5. N. Babouskos and J. T. Katsikadelis, “Flutter instability of damped plates under combined conservative and non-conservative loads,” Archive of Appl, Mech., 79, No. 6, 541-556 (2009).

    Article  Google Scholar 

  6. Z. Li, B. Wen, X. Dong, Z. Peng, Y. Qu, and W. Zhang, “Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows,” J. Wind Eng. Industrial Aerodynamics, 197, 104057 (2020).

    Article  Google Scholar 

  7. A. R. Ghasemi, A. Jahanshir, and M. H. Tarighat, “Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades,” Wind and Structures, 18, No. 2, 103-116 (2014).

    Article  Google Scholar 

  8. A. R. Ghasemi and M. Mohandes, “Composite Blades Of Wind Turbine: Design, Stress Analysis, Aeroelasticity, and Fatigue,” in: Wind Turbines-Design, Control And Applications, InTechOpen, 2016. 1-26.

  9. S. P. Evans, D. R. Bradney, and P. D. Clausen, “Development and experimental verification of a 5 kW small wind turbine aeroelastic model,” J. Wind Eng. Industrial Aerodynamics, 181, 104-111 (2018).

    Article  Google Scholar 

  10. C. Saxton and F. F. Afagh, “Modelling and dynamic stability of a hingeless active fibre composite blade.” Archive of Appl, Mech., 80, No. 8, 843-868 (2010).

    Article  Google Scholar 

  11. M. T. Piovan, S. Domini, and J. M. Ramirez, “In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams,” Composite Structures, 94, No. 11, 3194-3206 (2012).

    Article  Google Scholar 

  12. D. H. Hodges, “Non-linear in-plane deformation and buckling of rings and high arches,” Int. J. Non-Linear Mech., 34, No. 4, 723-737 (1999).

    Article  Google Scholar 

  13. O. O. Ozgumus and M. O. Kaya, “Energy expressions and free vibration analysis of a rotating Timoshenko beam featuring bending–bending-torsion coupling,” Archive of Appl, Mech., 83, No. 1, 97-108 (2013).

    Article  Google Scholar 

  14. M. R. Amoozgar and H. Shahverdi, “Aeroelastic stability analysis of curved composite blades in hover using fully intrinsic equations,” Int. J. Aeronautical and Space Sciences, 20, No. 3, 653-663 (2019).

    Article  Google Scholar 

  15. M. R. Amoozgar, S. A. Fazelzadeh, H. H. Khodaparast, M. I. Friswell, and J. E. Cooper, “Aeroelastic stability analysis of aircraft wings with initial curvature,” Aerospace Sci. Technol., 107, 106241 (2020).

    Article  Google Scholar 

  16. A. Elham and M. J. van Tooren, “Winglet multi-objective shape optimization,” Aerospace Sci. Technol., 37, 93-109 (2014).

    Article  Google Scholar 

  17. M. Ghalandari, S. Shamshirband, A. Mosavi, and K. W. Chau, “Flutter speed estimation using presented differential quadrature method formulation,” Eng. Applications of Computational Fluid Mech., 13, No. 1, 804-810 (2019).

    Article  Google Scholar 

  18. L. H. van Zyl and E. H. Mathews, “Aeroelastic analysis of T-tails using an enhanced Doublet Lattice Method,” J. Aircraft, 48, No. 3, 823-831 (2011).

    Article  Google Scholar 

  19. A. Attorni, L. Cavagna, and G. Quaranta, “Aircraft T-tail flutter predictions using computational fluid dynamics,” J. Fluids and Structures, 27, No. 2, 161-174 (2011).

    Article  Google Scholar 

  20. N. Nguyen-Thanh, K. Zhou, X. Zhuang, P. Areias, H. Nguyen-Xuan, Y. Bazilevs, and T. Rabczuk, “Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling,” J. Computer Methods Appl. Mech. Eng., 316, 1157-1178 (2017).

    Article  Google Scholar 

  21. N. Valizadeh, S. Natarajan, O. A. Gonzalez-Estrada, T. Rabczuk, T. Q. Bui, and S. P. A. Bordas, “NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter, “ J. Compos. Struct., 99, 309-326 (2013).

    Article  Google Scholar 

  22. T. T. Truong, J. Lee, and T. Nguyen-Thoi, “Multi-objective optimization of multi-directional functionally graded beams using an effective deep feedforward neural network-SMPSO algorithm,” Structural and Multidisciplinary Optimization, 63, Iss. 6, 2889-2918 (2021).

    Google Scholar 

  23. H. Guo, X. Zhuang, and T. Rabczuk, “A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate,” Tech Science Press, 59, No. 2, 433-456 (2019).

    Google Scholar 

  24. X. Zhuang, H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk, “Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning,” Eur. J. Mech. - A/Solids, 87, Article 104225 (2021).

  25. J. Murua, P. Martínez, H. Climent, L. van Zyl, and R. Palacios, “T-tail flutter: Potential-flow modelling, experimental validation and flight tests,” Progress in Aerospace Sciences, 71, 54-84 (2014).

    Article  Google Scholar 

  26. D. Tang and E. H. Dowell, “Computational/experimental aeroelastic study for a horizontal-tail model with free play,” AIAA Journal, 51, No. 2, 341-352 (2013).

    Article  Google Scholar 

  27. F. Afonso, J. Vale, É. Oliveira, F. Lau, and A. Suleman, “A review on non-linear aeroelasticity of high aspect-ratio wings,” Progress in Aerospace Sciences, 89, 40-57 (2017).

    Article  Google Scholar 

  28. A. Hermanutz and M. Hornung, “Aeroelastic wing planform design optimization of a flutter UAV demonstrator,” Aerospace, 7, No. 4, 45 (2020).

    Google Scholar 

  29. S. Kumar, A. K. Onkar, and M. Manjuprasad, “Stochastic modeling and reliability analysis of wing flutter,” J. Aerospace Eng., 33, No. 5, 04020044 (2020).

  30. D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity, 15, Cambridge University press (2011).

  31. R. Aleksandrowicz and W. Lucjanek, Sailplane Stiffness Measurements, 5, OSTIV Publications (1958).

  32. B. Budiansky, J. N. Kotanchik, and P. T. Chiarito, “A Torsional Stiffness Criterion for Preventing Flutter of Wings of Supersonic Missiles,” National Advisory Committee For Aeronautics Langley Field VA Langley Aeronautical Laboratory (1947).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ghasemi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejatbakhsh, H., Ghasemi, A.R., Gharaei, A. et al. An Analytical-Numerical Coupled Model for an Aeroelastic Analysis of Tail Flutter Based on Bending–Torsional Coupling. Mech Compos Mater 59, 757–768 (2023). https://doi.org/10.1007/s11029-023-10129-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-023-10129-3

Keywords

Navigation