Skip to main content
Log in

Triphenylphosphine Thiolate Gold(I) Complexes with Redox-Active Schiff Bases: Synthesis, Electrochemical Properties, and Biological Activity

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

New gold(I) phosphine thiolate complexes [(Ph3P)Au(SLn)] IV with Schiff bases LnSH containing redox-active catechol, phenol, or quinone methide moieties were synthesized and characterized. The molecular structure of compound I in the crystalline state was established by X-ray diffraction (CCDC no. 2237815). The electrochemical behavior of compounds IV was studieв by cyclic voltammetry. The proposed electrooxidation mechanism of the complexes involves the Au–S bond cleavage, the disulfide formation, as well as the oxidation of the redox active group of the ligand. In the cathode region, complexes IIII tend to form relatively stable monoanionic species. The radical scavenging activity of complexes decreases in comparison to free ligands in the reactions with synthetic radicals and the CUPRAC test. Compounds I, II, IV, and V have no clear-cut effect on the promoted DNA damage; however, they show antioxidant action in the non-enzymatic lipid peroxidation of rat liver homogenate. Compounds IV demonstrate a weak antibacterial activity against Staphylococcus aureus strains. The gold(I) complexes cytotoxicity was studied against A-549, MCF-7, and HTC-116 cancer cell lines using MTT assay. The test compounds are characterized by higher selectivity to certain types of cells than the sulfur-containing Schiff bases. The presence of quinone methide moiety in the ligand in case of V significantly increases the cytotoxicity against all of the cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Herrera, R.P. and Gimeno, M.C., Chem. Rev., 2021, vol. 121, no. 14, p. 8311.

    Article  CAS  PubMed  Google Scholar 

  2. Galassi, R., Luciani, L., and Wang, J., Biomolecules, 2022, vol. 12, p. 80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van der Westhuizen, D., Bezuidenhout, D.I., and Munro, O.Q., Dalton Trans., 2021, vol. 50, p. 17413.

    Article  CAS  PubMed  Google Scholar 

  4. Chupakhin, E. and Krasavin, M., Expert Opin. Ther. Pat., 2021, vol. 31, no. 8, p. 745.

    Article  CAS  PubMed  Google Scholar 

  5. Shpakovsky, D.B., Shtil, A.A., Kharitonashvili, E.V., et al., Metallomics, 2018, vol. 10, p. 406.

    Article  CAS  PubMed  Google Scholar 

  6. Milaeva, E.R., Shpakovsky, D.B., Gracheva, Y.A., et al., Pure Appl. Chem., 2020, vol. 92, no. 8, p. 1201.

    Article  CAS  Google Scholar 

  7. Antonenko, T.A., Gracheva, Yu.A., Shpakovsky, D.B., et al., J. Organomet. Chem., 2022, vol. 960, p. 122191.

    Article  CAS  Google Scholar 

  8. Bian, M., Wang, X., Sun, Y., et al., Eur. J. Med. Chem., 2020, vol. 193, p. 112234.

    Article  CAS  PubMed  Google Scholar 

  9. Sun, Y., Lu, Y., Bian, M., et al., Eur. J. Med. Chem., 2021, vol. 211, p. 113098.

    Article  CAS  PubMed  Google Scholar 

  10. Babgi, B.A., Alsayari, J., Alenezi, H.M., et al., Pharmaceutics, 2021, vol. 13, p. 461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida, T., Onaka, S., and Shiotsuka, M., Inorg. Chimica Acta, 2003, vol. 342, p. 319.

    Article  CAS  Google Scholar 

  12. Smolyaninov, I.V., Burmistrova, D.A., Arsenyev, M.V., et al., ChemistrySelect, 2021, vol. 6, no. 39, p. 10609.

    Article  CAS  Google Scholar 

  13. Gordon, A. and Ford, R., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.

    Google Scholar 

  14. CrysAlisPro, version 1.171.38.41, Rigaku Oxford Diffraction, 2015.

  15. Sheldrick, G.M., Acta Crystallogr. Sect. A: Found. Adv., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  16. Sheldrick, G.M., Acta Crystallogr. Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  17. Bondet, V., Brand-Williams, W., and Berset, C., Food. Sci. Technol., 1997, vol. 30, no. 6, p. 609.

    CAS  Google Scholar 

  18. Re, R., Pellergrini, N., Proteggente, A., et al., Free Rad. Biol. Med., 1999, vol. 26, nos. 9/10, p. 1231.

    Article  CAS  PubMed  Google Scholar 

  19. Özyürek, M., Güçlü, K., Tütem, E., et al., Anal. Methods, 2011, vol. 3, p. 2439.

    Article  Google Scholar 

  20. Smolyaninov, I.V., Pitikova, O.V., Korchagina, E.O., et al., Bioorg. Chem., 2019, vol. 89, p. 103003.

    Article  CAS  PubMed  Google Scholar 

  21. Stroev, E.N. and Makarova, V.G. Praktikum po biologicheskoi khimii (Laboratory Works in Biological Chemistry), Moscow: Vysshaya shkola, 1986.

  22. Smolyaninov, I.V., Burmistrova, D.A., Arsenyev, M.V., et al., Molecules, 2022, vol. 27, no. 10, p. 3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standards, 10th edn. CLSI document M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute, 2015.

  24. Astaf’eva, T.V., Arsenyev, M.V., Rumyantcev, R.V., et al., ACS Omega, 2020, vol. 5, no. 35, p. 22179.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Arsenyev, M.V., Baranov, E.V., Chesnokov, S.A., et al., Russ. Chem. Bull., 2013, vol. 62, no. 11, p. 2394.

    Article  CAS  Google Scholar 

  26. Baryshnikova, S.V., Bellan, E.V., Poddel’sky, A.I., et al., Eur. J. Inorg. Chem., 2016, vol. 2016, no. 33, p. 5230.

    Article  CAS  Google Scholar 

  27. Poddel’sky, A.I., Arsenyev, M.V., Astaf’eva, T.V., et al., J. Organomet. Chem., 2017, vol. 835, p. 17.

    Article  Google Scholar 

  28. Arsenyev, M.V., Astafeva, T.V., Baranov, E.V., et al., Mendeleev Commun., 2018, vol. 28, p. 76.

    Article  CAS  Google Scholar 

  29. Helmstedt, U., Lebedkin, S., Hocher, T., et al., Inorg. Chem., 2008, vol. 47, p. 5815.

    Article  CAS  PubMed  Google Scholar 

  30. Watase, S., Kitamura, T., Kanehisa, N., et al., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2004, vol. 60, p. m104.

    Article  Google Scholar 

  31. Watase, S., Kitamura, T., Kanehisa, N., et al., Chem. Lett., 2003, vol. 32, p. 1070.

    Article  CAS  Google Scholar 

  32. Kang, J.-G., Cho, H.-K., Park, C., et al., Inorg. Chem., 2007, vol. 46, p. 8228.

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed, L.S., Clegg, W., Davies, D.A., et al., Polyhedron, 1999, vol. 18, p. 593.

    Article  CAS  Google Scholar 

  34. Milaeva, E.R., Shpakovsky, D.B., Dyadchenko, V.P., et al., Polyhedron, 2017, vol. 127, p. 512.

    Article  CAS  Google Scholar 

  35. Yoshida, T., Onaka, S., and Shiotsuka, M., Inorg. Chim. Acta, 2003, vol. 342, p. 319.

    Article  CAS  Google Scholar 

  36. Jones, A.M., Rahman, M.H., and Bal, M.K., ChemElectroChem., 2020, vol. 6, no. 16, p. 4093.

    Google Scholar 

  37. Silva, T.L., Maria de Lourdes, S.G., de Azevedo, Ferreira, F.R., et al., Curr. Opin. Electrochem., 2020, vol. 24, p. 79.

    Article  CAS  Google Scholar 

  38. Mohamed, A.A., Bruce, A.E., and Bruce, M.R.M., Metal-Based Drugs, 1999, vol. 6, nos. 4–5, p. 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, J., Jiang, T., Wei, G., et al., J. Am. Chem. Soc., 1999, vol. 121, p. 9225.

    Article  CAS  Google Scholar 

  40. Mohamed, A., Chen, J., Bruce, A.E., et al., Inorg. Chem., 2003, vol. 42, p. 2203.

    Article  CAS  PubMed  Google Scholar 

  41. Abdou, H.E., Mohamed, A.A., Fackler, J.P., Jr., et al., Coord. Chem. Rev., 2009, vol. 253, p. 1661.

    Article  CAS  Google Scholar 

  42. Kupiec, M., Ziółkowski, R., Massai, L., et al., J. Inorg. Biochem., 2019, vol. 198, p. 110714.

    Article  CAS  PubMed  Google Scholar 

  43. Smolyaninov, I.V., Poddel’sky, A.I., Baryshnikova, S.V., et al., Applied Organometal. Chem., 2018, vol. 32, p. e4121.

    Article  Google Scholar 

  44. Baryshnikova, S.V., Poddel’sky, A.I., Bellan, E.V., et al., Inorg. Chem., 2020, vol. 59, p. 6774.

    Article  CAS  PubMed  Google Scholar 

  45. Vessières, A., Wang, Y., McGlinchey, M.J., et al., Coord. Chem. Rev., 2021, vol. 430, p. 213658.

    Article  Google Scholar 

  46. Nobili, S., Mini, E., Landini, I., et al., Med. Chem. Res., 2010, vol. 30, p. 550.

    CAS  Google Scholar 

  47. Abás, E., Pena-Martínez, R., Aguirre-Ramírez, D., et al., Dalton Trans., 2020, vol. 49, p. 1915.

    Article  PubMed  Google Scholar 

  48. Luo, J.M., Ma, X., Jiang, W., et al., Eur. J. Med. Chem., 2022, vol. 232, p. 114168.

    Article  CAS  PubMed  Google Scholar 

  49. Smolyaninov, I.V., Kuzmin, V.V., Arsenyev, M.V., et al., Russ. Chem. Bull., 2017, vol. 7, p. 1217.

    Article  Google Scholar 

  50. Thangamani, S., Mohammad, H., Abushahba, M.F.N., et al., Sci. Rep., 2016, vol. 6, p. 22571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Almeida, A.M., de Oliveira, B.A., de Castro, P.P., et al., Biometals, 2017, vol. 30, p. 841.

    Article  PubMed  Google Scholar 

  52. Liu, Y., Lu, Y., Xu, Z., et al., Drug Discov. Today, 2022, vol. 27, no. 7, p. 1961.

    Article  CAS  PubMed  Google Scholar 

  53. Stenger-Smith, J.R. and Mascharak, P.K., ChemMedChem., 2020, vol. 15, no. 18, p. 2136.

    Article  CAS  PubMed  Google Scholar 

  54. Bolton, J.L. and Dunlap, T., Chem. Res. Toxicol., 2017, vol. 30, p. 13.

    Article  CAS  PubMed  Google Scholar 

  55. Madajewski, B., Boatman, M.A., Chakrabarti, G., et al., Mol. Cancer Res., 2016, vol. 14, p. 14.

    Article  CAS  PubMed  Google Scholar 

  56. Parkinson, E.I. and Hergenrother, P.J., Acc. Chem. Res., 2015, vol. 48, no. 10, p. 2715.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, K., Chen, D., Ma, K., et al., J. Med. Chem., 2018, vol. 61, p. 6983.

    Article  CAS  PubMed  Google Scholar 

  58. Antonenko, T.A., Shpakovsky, D.B., and Bersene-va, D.A., et al., J. Organomet. Chem., 2020, vol. 909, p. 121089.

    Article  CAS  Google Scholar 

  59. Fereidoonnezhad, M., Mirsadeghi, H.A., Abedanzadeh, S., et al., New J. Chem., 2019, vol. 43, p. 13173.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-29-08003) and by State Assignment (no. 123031400121-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Smolyaninov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolyaninov, I.V., Burmistrova, D.A., Pomortseva, N.P. et al. Triphenylphosphine Thiolate Gold(I) Complexes with Redox-Active Schiff Bases: Synthesis, Electrochemical Properties, and Biological Activity. Russ J Coord Chem 49, 577–592 (2023). https://doi.org/10.1134/S1070328423600420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600420

Keywords:

Navigation