Skip to main content
Log in

Nitro-Substituted Pyridinimine Complexes of Pd(II): Synthesis and Inhibition of MAO-B ex vivo

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The first ever synthesis of complexes [PdLCl2] (I) and [PdLBr2] (II) was successfully achieved, where L = 2,6-dimethyl-4-nitro-N-(pyridin-2-ylmethylildene)aniline, a ligand with a purported ability to inhibit monoamine oxidase B (MAO-B). To gain insight into the molecular structure of complexes I and II, as well as the ligand precursor 2,6-dimethyl-4-nitroaniline L4 (CIF files CCDC nos. 2255106 (I), 2255105 (II), 2255103 (L), 2255104 (L4)), X-ray diffraction analysis was utilized. Complex I underwent further characterization to determine its stability, solubility, and lipophilicity. Cytotoxicity studies of substances L, I, and II on human embryonic kidney cell line HEK-293 showed no evidence of cytotoxic activity. To evaluate the inhibitory activity of new substances L, I, and II as well as established substances IIIIX, selegiline, and rasagiline, ex vivo studies were conducted, establishing a structure/activity relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ndagi, U., Mhlongo, N., and Soliman, M.E., Drug Des. Dev. Ther., 2017, vol. 11, p. 599. https://doi.org/10.2147/DDDT.S119488

    Article  CAS  Google Scholar 

  2. Kotieva, I.M., Dodokhova, M.A., Safronenko, A.V., et al., J. Clin. Oncol., 2022, vol. 40, no. 16, p. e15080. https://doi.org/10.1200/JCO.2022.40.16_suppl.e15080

    Article  Google Scholar 

  3. Yambulatov, D.S., Lutsenko, I.A., Nikolaevskii, S.A., et al., Molecules, 2022, vol. 27, no. 23, p. 8565. https://doi.org/10.3390/Molecules27238565

  4. Czarnomysy, R., Radomska, D., Szewczyk, O.K., et al., Int. J. Mol. Sci., 2021, vol. 22, no. 15, p. 8271. https://doi.org/10.3390/ijms22158271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abu-Surrah, A.S. and Kettunen, M., Curr. Med. Chem., 2006, vol. 13, no. 11, p. 1337.

    Article  CAS  PubMed  Google Scholar 

  6. Sharma, N.K., Ameta, R.K., and Singh, M., Biochem. Res. Int., 2016, vol. 2016. 4359375. https://doi.org/10.1155/2016/4359375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scattolin, Th., Voshkin, V.A., Visentin, F., and Nolan, S.P., Cell. Rep. Phys. Sci., 2021, vol. 2, p. 100446. https://doi.org/10.1016/j.xcrp.2021.100446

    Article  CAS  Google Scholar 

  8. Boyarskii, V.P., Mikherdov, A.S., Baikov, S.V., et al., Pharm. Chem. J., 2021, vol. 55, no. 2, p. 130. https://doi.org/10.1007/s11094-021-02393-1

  9. Batyrenko, A.A., Mikolaichuk, O.V., Ovsepyan, G.K., et al., Russ. J. Gen. Chem., 2021, vol. 91, no. 4, p. 666. https://doi.org/10.1134/S1070363221040149

    Article  CAS  Google Scholar 

  10. Zalevskaya, O.A., Gur’eva, Y.A., and Kutchin, A.V., Inorg. Chim. Acta, 2021, vol. 527, p. 120593. https://doi.org/10.1016/j.ica.2021.120593

    Article  CAS  Google Scholar 

  11. Ibatullina, M.R., Zhil’tsova, E.P., Kulik, N.V., et al., Russ. Chem. Bull., 2022, vol. 71, no. 2, p. 314. https://doi.org/10.1007/s11172-022-3413-6

    Article  CAS  Google Scholar 

  12. Denisov, M.S. and Glushkov, V.A., Bull. Perm. Univ. Chem., 2018, vol. 8, no. 4, p. 388. https://doi.org/10.17072/2223-1838-2018-4-388-411

    Article  Google Scholar 

  13. Egorova, K.S., Galushko, A.S., and Ananikov, V.P., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, p. 22296. https://doi.org/10.1002/anie.20200308

    Article  CAS  PubMed  Google Scholar 

  14. Denisov, M.S., Vestn. Perm. Feder. Issl. Tsentr., 2021, no. 4, p. 6. https://doi.org/10.7242/2658-705X/2021.4.1

  15. Patra, M. and Gasse, G., ChemBioChem, 2012, vol. 13, no. 9, p. 1232. https://doi.org/10.1002/cbic.201200159

    Article  CAS  PubMed  Google Scholar 

  16. Özbek, N., Alyar, S., Memmi, B.K., et al., J. Mol. Struct., 2017, vol. 1127, p. 437. https://doi.org/10.1016/j.molstruc.2016.07.122

    Article  CAS  Google Scholar 

  17. Ahmed, M., Khan, Sh.Z., Sher, N., et al., J. Venomous Anim. Toxins Incl. Trop. Dis., 2021, vol. 27, p. e20200047. https://doi.org/10.1590/1678-9199-JVATITD-2020-0047

    Article  CAS  Google Scholar 

  18. Bal, S., Demirci, Ö., Şen, B., et al., Polyhedron, 2021, vol. 198, p. 115060. https://doi.org/10.1016/j.poly.2021.115060

    Article  CAS  Google Scholar 

  19. Sahin, Ö., Özdemir, Ü.Ö., Seferoğlu, N., et al., J. Biomol. Struct. Dyn., 2021, p. 4460. https://doi.org/10.1080/07391102.2020.1858163

  20. García-García, A., Rojas, S., Rivas-García, L., et al., Chem. Commun., 2022, vol. 58, p. 1514. https://doi.org/10.1039/D1CC04404D

    Article  Google Scholar 

  21. Karataş, M.O., Çalgın, G., Alıcı, B., et al., Appl. Organomet. Chem., 2019, vol. 33, no. 10, p. e5130. https://doi.org/10.1002/aoc.5130

    Article  CAS  Google Scholar 

  22. Asma, M., Badshah, A., Ali, S., et al., Transition Met. Chem., 2006, vol. 31, p. 556. https://doi.org/10.1007/s11243-006-0027-z

    Article  CAS  Google Scholar 

  23. Lassig, J.P., Shultz, M.D., Gooch, M.G., et al., Arch. Biochem. Biophys., 1995, vol. 322, no. 1, p. 119. https://doi.org/10.1006/abbi.1995.1443

    Article  CAS  PubMed  Google Scholar 

  24. Vieites, M., Smircich, P., Parajón-Costa, B., et al., J. Biol. Inorg. Chem., 2008, vol. 13, no. 10, p. 1839. https://doi.org/10.1016/j.jinorgbio.2008.05.010

    Article  CAS  Google Scholar 

  25. Fricker, S.P., Mosi, R.M., Cameron, B.R., et al., J. Inorg. Biochem., 2008, vol. 102, no. 10, p. 1839. https://doi.org/10.1016/j.jinorgbio.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  26. Carneiro, Z.A., Lima, J.C., Lopes, C.D., et al., Eur. J. Med. Chem., 2019, vol. 180, no. 15, p. 213. https://doi.org/10.1016/j.ejmech.2019.07.014

    Article  CAS  PubMed  Google Scholar 

  27. Gama, N.H., Elkhadir, A.Y.F., Gordhan, B.G., et al., Biometals, 2016, vol. 29, p. 637. https://doi.org/10.1007/s10534-016-9940-6

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Ch., Sun, L.-Yu., Gao, H., et al., ACS Infect. Dis., 2020, vol. 6, no. 5, p. 975. https://doi.org/10.1021/acsinfecdis.9b00385

    Article  CAS  PubMed  Google Scholar 

  29. Mital, R., Shah, G.M., Srivastava, T.S., and Bhattacharya, R.K., Life Sci., 1992, vol. 50, no. 11, p. 781. https://doi.org/10.1016/0024-3205(92)90183-P

    Article  CAS  PubMed  Google Scholar 

  30. Petrović, Z.D., Hadjipavlou-Litina, D., Pontiki, E., et al., Bioorg. Chem., 2009, vol. 37, no. 5, p. 162. https://doi.org/10.1016/j.bioorg.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  31. Hegazy, W.H. and Al-Faiyz, Ya.S., Med. Chem. Res., 2014, vol. 23, no. 1, p. 518. https://doi.org/10.1007/s00044-013-0661-x

    Article  CAS  Google Scholar 

  32. Lima, M.A., Costa, V.A., Franco, M.A., et al., Inorg. Chem. Commun., 2020, vol. 112, p. 107708. https://doi.org/10.1016/j.inoche.2019.107708

    Article  CAS  Google Scholar 

  33. Krinulović, K., Bugarčić, Ž., Vrvić, M., et al., Toxicol. In Vitro, 2006, vol. 20, no. 8, p. 1292. https://doi.org/10.1016/j.tiv.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  34. Tatyanenko, L.V., Kotelnikova, R.A., Zakharova, I.A., and Moshkovskii, Yu.Sh., Inorg. Chim. Acta, 1981, vol. 56, p. 89.

    Article  CAS  Google Scholar 

  35. Parrilha, G.L., Ferraz, K.S.O., Lessa, J.A., et al., Eur. J. Med. Chem., 2014, vol. 84, no. 12, p. 537. https://doi.org/10.1016/j.ejmech.2014.07.055

    Article  CAS  PubMed  Google Scholar 

  36. Türkan, F., Huyut, Z., and Atalar, M.N., J. Biochem. Mol. Toxicol., 2018, vol. 32, no. 10, p. e22205, https://doi.org/10.1002/jbt.22205

    Article  CAS  PubMed  Google Scholar 

  37. Edmondson, D.E., Binda, C., and Mattevi, A., Arch. Biochem. Biophys., 2007, vol. 464, p. 269. https://doi.org/10.1016/j.abb.2007.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pharmaceutical Chemistry, Watson, D.R., Ed., Glasgow: Elsevier, 2011, p. 641.

    Google Scholar 

  39. Hong, R. and Li, X., MedChemComm, 2019, vol. 10, p. 10. https://doi.org/10.1039/c8md00446c

    Article  CAS  PubMed  Google Scholar 

  40. Tat’yanenko, L.V., Sokolova, N.V., and Mosh-kovsky, Y.S., Vopr. Med. Khim., 1982, vol. 28, p. 126.

    Google Scholar 

  41. Albert, J., Cadena, J.M., González, A., et al., Chem. Commun., 2003, vol. 41, no. 4, p. 528. https://doi.org/10.1039/B211808D

    Article  Google Scholar 

  42. Cho, H.-U., Kim, S., Sim, J., et al., Exp. Mol. Med., 2021, vol. 53, p. 1148. https://doi.org/10.1038/s12276-021-00646-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Denisov, M.S., Gagarskikh, O.N., and Utushkina, T.A., Bull. Perm. Univ. Chem., 2021, vol. 11, no. 1, p. 30. https://doi.org/10.17072/2223-1838-2021-1-30-58

    Article  Google Scholar 

  44. Denisov, M.S., Dmitriev, M.V., Eroshenko, D.V., et al., Russ. J. Inorg. Chem., 2019, vol. 64, no. 1, p. 56. https://doi.org/10.1134/S0036023619010054

    Article  CAS  Google Scholar 

  45. Yang, D.D., Wang, R., Zhu, J.L., et al., J. Mol. Struct., 2017, vol. 1128, no. 15, p. 493. https://doi.org/10.1016/j.molstruc.2016.08.037

    Article  CAS  Google Scholar 

  46. Hao, Ch., Huang, W., Li, X., et al., Eur. J. Med. Chem., 2017, vol. 131, p. 1. https://doi.org/10.1016/j.ejmech.2017.02.063

    Article  CAS  PubMed  Google Scholar 

  47. CrysAlisPro. Agilent Technologies. Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).

  48. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  49. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  50. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  51. Gonçalves, B.M.F., Salvador, J.A.R., Marín, S., and Cascante, M., Eur. J. Med. Chem., 2016, vol. 114, p. 101. https://doi.org/10.1016/j.ejmech.2016.02.057

    Article  CAS  PubMed  Google Scholar 

  52. Thull, U. and Testa, B., Biochem. Pharmacol., 1994, vol. 47, no. 22, p. 2307. https://doi.org/10.1016/0006-2952(94)90271-2

    Article  CAS  PubMed  Google Scholar 

  53. Andrade, J.M.M., Passos, C.D.S., Dresch, R.R., et al., Pharmacogn. Mag., 2014, vol. 10, no. 37, p. 100. https://doi.org/10.4103/0973-1296.127354

    Article  CAS  Google Scholar 

  54. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem., 1951, vol. 193, no. 1, p. 265.

    Article  CAS  PubMed  Google Scholar 

  55. O’Donnell, A.D., Gavriel, A.G., Christie, W., et al., Arkivoc, 2021, Pt. VI, p. 222. https://doi.org/10.24820/ark.5550190.p011.581

  56. Park, S., Lee, J., Jeong, J.H., et al., Polyhedron, 2018, vol. 151, no. 1, p. 82. https://doi.org/10.1016/j.poly.2018.05.031

    Article  CAS  Google Scholar 

  57. Motswainyana, W.M., Onani, M.O., Jacobs, J., and Meervelt, L.V., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2012, vol. 68, p. 356. https://doi.org/10.1107/S0108270112045970

    Article  CAS  Google Scholar 

  58. Laine, T.V., Klinga, M., and Leskelä, M., Eur. J. Inorg. Chem., 1999, vol. 1999, no. 6, p. 959. https://doi.org/10.1002/(SICI)1099-0682(199906)1999:6<959::AID-EJIC959>3.0.CO;2-Z

    Article  Google Scholar 

  59. Delogu, G.L., Pintus, F., Mayán, L., et al., MedChemComm, 2017, vol. 8, p. 1788. https://doi.org/10.1039/C7MD00311K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Finberg, J.P.M. and Rabey, J.M., Front. Pharmacol., 2016, vol. 18, no. 7, p. 340. https://doi.org/10.3389/fphar.2016.00340

    Article  CAS  Google Scholar 

  61. Denisov, M.S. and Gagarskikh, O.N., Russ. J. Gen. Chem., 2021, vol. 91, no. 7, p. 1354. https://doi.org/10.1134/S1070363221070136

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of The Core Facilities Centre “Research of materials and matter” at the PFRC UB RAS. The author acknowledges O.A. Maiorova (Perm Federal Research Center, Ural Branch, RAS) for recording the NMR spectra, I.A. Borisova (Perm Federal Research Center, Ural Branch, RAS) for recording the IR spectra, M.V. Dmitriev for X-ray (Perm State University), A.A. Gorbunov for GC-MS and A.O. Voronina and O.N. Gagarskikh (Perm Federal Research Center, Ural Branch, RAS) for performing the MTT test.

Funding

The study was supported by the Russian Foundation for Basic Research and the Perm Region Ministry of Education and Science according to the Research Project no. 19-43-590003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Denisov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, M.S., Beloglazova, Y.A. Nitro-Substituted Pyridinimine Complexes of Pd(II): Synthesis and Inhibition of MAO-B ex vivo. Russ J Coord Chem 49, 565–576 (2023). https://doi.org/10.1134/S1070328423600626

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600626

Keywords:

Navigation