Skip to main content
Log in

Kinetics of Ultrasonic Dissolution of Metal Oxide Powder for Different Spatial Combinations of the Cavitation Region and Eckart Acoustic Flow

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The features of the impact of acoustic flow and cavitation created by a traveling ultrasonic wave, which can be used for efficient dissolution of a metal oxide powder, are considered. On the basis of a simplified scheme, which, nevertheless, takes into account all the essential features of the phenomenon under study, exact expressions are obtained for all parameters of stationary vortex motion and cavitation, which fully meet the requirements for proper control of the reaction course. Equations are derived that describe the dissolution kinetics for two typical regimes: developed cavitation and pre-cavitation state. Expressions are found for the time to completion of the process. On the example of these two most typical types of reaction, the conditions are formulated under which it will be possible to fully satisfy the solution of the technological challenges. The methods for the optimal application of the ultrasonic dissolution scheme are presented and those features of its formation that make it possible to control the process are noted. The performed calculations make it possible to select and accurately implement the scheme of acoustic stimulation of dissolution which best corresponds to the expected output results and other processing features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Narayana, K.L., Swamy, K.M., Rao, K.S., and Murty, J.S., Leaching of metals from ores with ultrasound, Miner. Process. Extr. Metall. Rev, 1997, vol. 16, no. 4, pp. 239–259. https://doi.org/10.1080/08827509708914137

    Article  CAS  Google Scholar 

  2. Lei, C., Aldous, I., Hartley, J.M., Thompson, D.L., Scott, S., Hanson, R., Anderson, P.A., Kendrick, E., Sommerville, R., Ryder, K.S., and Abbott, A.P., Lithium ion battery recycling using high-intensity ultrasonication, Green Chem., 2021, vol. 23, no. 13, pp. 4710–4715. https://doi.org/10.1039/D1GC01623G

    Article  CAS  Google Scholar 

  3. Sandilya, D.K. and Kannan, A., Intensification of the dissolution of a sparingly soluble solid from a spinning disk in the presence of power ultrasound, Ind. Eng. Chem. Res., 2011, vol. 50, no. 23, pp. 13083–13091. https://doi.org/10.1021/ie101702u

    Article  CAS  Google Scholar 

  4. Wang, X., Srinivasakannan, C., Duan, X., Peng, J., Yang, D., and Ju, S., Leaching kinetics of zinc residues augmented with ultrasound, Sep. Purif. Technol., 2013, vol. 115, pp. 66–72. https://doi.org/10.1016/j.seppur.2013.04.043

    Article  CAS  Google Scholar 

  5. Avvaru, B., Roy, S.B., Chowdhury, S., Hareendran, K.N., and Pandit, A.B., Enhancement of the leaching rate of uranium in the presence of ultrasound, Ind. Eng. Chem. Res., 2006, vol. 45, no. 22, pp. 7639–7648. https://doi.org/10.1021/ie060599x

    Article  CAS  Google Scholar 

  6. Li, X., Zhang, J., and Yang, D., Determination of antiscaling efficiency and dissolution capacity for calcium carbonate with ultrasonic irradiation, Ind. Eng. Chem. Res., 2012, vol. 51, no. 27, pp. 9266–9274. https://doi.org/10.1021/ie300575v

    Article  CAS  Google Scholar 

  7. Gui, Q., Khan, M.I., Wang, S., and Zhang, L., The ultrasound leaching kinetics of gold in the thiosulfate leaching process catalysed by cobalt ammonia, Hydrometallurgy, 2020, vol. 196, article no. 105426. https://doi.org/10.1016/j.hydromet.2020.105426

    Article  CAS  Google Scholar 

  8. Gradov, O.M., Voshkin, A.A., and Zakhodyaeva, Yu.A., Estimating the parameters of ultrasonically induced mass transfer and flow of liquids in the pseudomembrane method, Chem. Eng. Process., 2017, vol. 118, pp. 54–61. https://doi.org/10.1016/j.cep.2017.04.017

    Article  CAS  Google Scholar 

  9. Gradov, O.M., Zinov’eva, I.V., Zakhodyaeva, Y.A., and Voshkin, A.A., Kinetics of ultrasound–assisted dissolution of a LiCoO2 powder in the deep eutectic solvent choline chloride–sulfosalicylic acid, Theor. Found. Chem. Tekhnol., 2022, vol. 56, no. 6, pp. 997–1002. https://doi.org/10.1134/S0040579522060069

    Article  CAS  Google Scholar 

  10. Gradov, O.M., Zakhodyaeva, Yu.A., and Voshkin, A.A., Breakup of immiscible liquids at the interface using high-power acoustic pulses, Chem. Eng. Process., 2018, vol. 131, pp. 125–130. https://doi.org/10.1016/j.cep.2018.07.011

    Article  CAS  Google Scholar 

  11. Gradov, O.M., Zakhodyaeva, Yu.A., Zinov’eva, I.V., and Voshkin, A.A., Some features of the ultrasonic liquid extraction of metal ions, Molecules, 2019, vol. 24, no. 19, article no. 3549. https://doi.org/10.3390/molecules24193549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gradov, O.M., Zakhodyaeva, Yu.A., Zinov’eva, I.V., and Voshkin, A.A., Ultrasonic intensification of mass transfer in organic acid extraction, Processes, 2021, vol. 9, no. 1, article no. 15. https://doi.org/10.3390/pr9010015

    Article  CAS  Google Scholar 

  13. Gradov, O.M., Zakhodyaeva, Yu.A., and Voshkin, A.A., Dynamics of mass transfer through the interface between immiscible liquids under the resonance effect of ultrasound, Theor. Found. Chem. Eng., 2020, vol. 54, no. 6, pp. 1148–1155. https://doi.org/10.1134/S0040579520060044

    Article  CAS  Google Scholar 

  14. John, J.J., De Houwer, V., Van Mechelen, D., and Van Gerven, T., Effect of ultrasound on leaching of lead from landfilled metallurgical residues, Ultrason. Sonochem., 2020, vol. 69, article no. 105239. https://doi.org/10.1016/j.ultsonch.2020.105239

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, J., Yuan, J., Tian, Z., Yang, K., Yao, Z., Yu, B., and Zhang, L., Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis, Ultrason. Sonochem., 2018, vol. 40, Part A, pp. 21–29. https://doi.org/10.1016/j.ultsonch.2017.06.024

  16. Lei, C., Aldous, I., Hartley, J.M., Thompson, D.L., Scott, S., Hanson, R., Anderson, P.A., Kendrick, E., Sommerville, R., Ryder, K.S., and Abbott, A.P., Lithium ion battery recycling using high-intensity ultrasonication, Green Chem., 2021, vol. 23, no. 13, 4710–4715. https://doi.org/10.1039/D1GC01623G

    Article  CAS  Google Scholar 

  17. Marafi, M. and Stanislaus, A., Waste catalyst utilization: Extraction of valuable metals from spent hydroprocessing catalysts by ultrasonic-assisted leaching with acids, Ind. Eng. Chem. Res., 2011, vol. 50, no. 16, pp. 9495–9501. https://doi.org/10.1021/ie200789u

    Article  CAS  Google Scholar 

  18. Kong, J., Xing, P., Wei, D., Jin, X., and Zhuang, Y., Ultrasound-assisted leaching of iron from silicon diamond–wire saw cutting waste, JOM, 2021, vol. 73, no. 3, pp. 791–800. https://doi.org/10.1007/s11837-020-04497-7

    Article  CAS  Google Scholar 

  19. Swamy, K. and Narayana, K.L., Intensification of leaching process by dual-frequency ultrasound, Ultrason. Sonochem., 2001, vol. 8, no. 4, pp. 341–346. https://doi.org/10.1016/S1350-4177(01)00067-0

    Article  CAS  PubMed  Google Scholar 

  20. Lupacchini, M., Mascitti, A., Giachi, G., Tonucci, L., d’Alessandro, N., Martinez, J., and Colacino, E., Sonochemistry in non-conventional, green solvents or solvent-free reactions, Tetrahedron, 2017, vol. 73, no. 6, pp. 609–653. https://doi.org/10.1016/j.tet.2016.12.014

    Article  CAS  Google Scholar 

  21. Grénman, H., Murzina, E., Rönnholm, M., Eränen, K., Mikkola, J.-P., Lahtinen, M., Salmi, T., and Murzin, D.Yu., Enhancement of solid dissolution by ultrasound, Chem. Eng. Process., 2007, vol. 46, no. 9, pp. 862–869. https://doi.org/10.1016/j.cep.2007.05.013

    Article  CAS  Google Scholar 

  22. Kannan, A. and Pathan, S.K., Enhancement of solid dissolution process, Chem. Eng. J., 2004, vol. 102, no. 1, pp. 45–49. https://doi.org/10.1016/j.cej.2004.01.022

    Article  CAS  Google Scholar 

  23. Gradov, O.M., Zinov’eva, I.V., Zakhodyaeva, Y.A., and Voshkin, A.A., Modelling of the erosive dissolution of metal oxides in a deep eutectic solvent–choline chloride/sulfosalicylic acid—assisted by ultrasonic cavitation, Metals, 2021, vol. 11, no. 12, article no. 1964. https://doi.org/10.3390/met11121964

    Article  CAS  Google Scholar 

  24. Vortices and streams caused by sound waves, Phys. Rev., 1948, vol. 73, no. 1, pp. 68–76. https://doi.org/10.1103/PhysRev.73.68

  25. Flynn, H.G., Physics of acoustic cavitations in liquids, in: Physical Acoustics, Mason, W.P., Ed., New York: Academic Press, 1964, vol. 1, part B, 57.

  26. Schukarew, A., Reaktion geschwindigkeiten zwischen metallen und aloiden, Z. Phys. Chem., 1891, Bd. 8U, pp. 76–81. https://doi.org/10.1515/zpch-1891-0804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Gradov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gradov, O.M., Zinov’eva, I.V., Zakhodyaeva, Y.A. et al. Kinetics of Ultrasonic Dissolution of Metal Oxide Powder for Different Spatial Combinations of the Cavitation Region and Eckart Acoustic Flow. Theor Found Chem Eng 57, 255–264 (2023). https://doi.org/10.1134/S0040579523030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523030065

Keywords:

Navigation