Skip to main content
Log in

Topological Effects with Inverse Quadratic Yukawa Plus Inverse Square Potential on Eigenvalue Solutions

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We study the nonrelativistic Schrödinger wave equation under the influence of a quantum flux field with an interaction potential in the background of a pointlike global monopole (PGM). In fact, we consider an inverse quadratic Yukawa plus inverse square potential and derive the radial equation employing the Greene–Aldrich approximation scheme in the centrifugal term. We determine the approximate eigenvalue solution using the parametric Nikiforov–Uvarov method and analyze the result. Afterwards, we derive the radial wave equation using the same potential employing a power series expansion method in the exponential potential and solve it analytically. We show that the energy eigenvalues are shifted by the topological defects of a pointlike global monopole as compared to the flat space result. In addition, we see that the energy eigenvalues depend on the quantum flux field that shows an analogue to the Aharonov–Bohm effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S. M. Ikhdair and R. Sever, J. Molec. Struct.: THEOCHEM 855, 13 (2008).

    Article  Google Scholar 

  2. S. M. Ikhdair, Cent. Eur. J. Phys. 10, 361 (2012).

    Google Scholar 

  3. S. M. Ikhdair and M. Hamzavi, Few-Body Syst. 53, 487 (2012).

    Article  ADS  Google Scholar 

  4. C. Berkdemir, J. Math. Chem. 46, 139 (2009).

    Article  MathSciNet  Google Scholar 

  5. C. Berkdemir and Y. F. Cheng, Phys. Scr. 79, 034003 (2009).

    Article  Google Scholar 

  6. S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. C 19, 221 (2008).

    Article  ADS  Google Scholar 

  7. S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A 21, 6699 (2006).

    Article  ADS  Google Scholar 

  8. S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A 21, 3989 (2006).

    Article  ADS  Google Scholar 

  9. H. Hassanabadi, H. Rahimov, and S. Zarrinkamar, Adv. High Energy Phys. 2011, 458087 (2011).

    Article  Google Scholar 

  10. S. H. Dong, Int. J. Quant. Chem. 109, 701 (2009).

    Article  ADS  Google Scholar 

  11. B. J. Falaye, Few-Body Syst. 53, 557 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  12. W. Greiner and B. Muller, Quantum Mechanics: An Introduction (Springer, Berlin, Germany, 1994).

    Book  MATH  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, the Non-relativistic Theory (Pergamon, Oxford, 1977).

    MATH  Google Scholar 

  14. H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry: Introduction to Experiments and Theory (Springer, Berlin, Germany, 1995).

    Book  MATH  Google Scholar 

  15. F. Constantinescu and E. Magyari, Probelms in Quantum Mechanics (Pergamon Press, Oxford, 1971).

    Google Scholar 

  16. D. J. Griffiths, Introduction to Quantum Mechanics (Prentice-Hall, New-Jersey, 2004).

  17. C. Furtado and F. Moraes, J. Phys. A: Math. Gen. 33, 5513 (2000).

    Article  ADS  Google Scholar 

  18. R. L. L. Vitoria and H. Belich, Phys. Scr. 94, 125301 (2019).

    Article  ADS  Google Scholar 

  19. A. L. C. de Oliveira and E. R. B. de Mello, Int. J. Mod. Phys. A 18, 3175 (2003).

    Article  ADS  Google Scholar 

  20. E. R. B. de Mello and C. Furtado, Phys. Rev. D 56, 1345 (1997).

    Article  ADS  Google Scholar 

  21. A. L. Cavalcanti de Oliveira and E. R. B. de Mello, Int. J. Mod. Phys. A 18, 2051 (2003).

    Article  ADS  Google Scholar 

  22. A. L. Cavalcanti de Oliveira and E R Bezerra de Mello, Class. Quantum Grav. 23, 5249 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  23. Geusa de A. Marques and Valdir B. Bezerra, Class. Quantum Gravit. 19, 985 (2002).

    Article  ADS  Google Scholar 

  24. P. Nwabuzor, C. Edet, A. N. Ikot, U. Okorie, M. Ramantswana, R. Horchani, A. H. A.-Aty, and G. Rampho, Entropy 23(8), 1060 (2021).

    Article  ADS  Google Scholar 

  25. F. Ahmed, Mol. Phys. 120, e2124935 (2022).

    Article  ADS  Google Scholar 

  26. F. Ahmed, arXiv: 2209.13490 [quant-ph].

  27. F. Ahmed, arXiv: 2210.04617 [hep-th].

  28. F. Ahmed, Phys. Scr. 98, 015403 (2023).

    Article  ADS  Google Scholar 

  29. F. Ahmed, EPL 141, 25003 (2003).

    Article  Google Scholar 

  30. F. Ahmed, Mol. Phys. 121, e2155596 (2023).

    Article  ADS  Google Scholar 

  31. F. Ahmed, Int. J. Geom. Meths. Mod. Phys. 20, 2350060 (2023).

    Article  Google Scholar 

  32. F. Ahmed, Indian J. Phys. (2023). https://doi.org/10.1007/s12648-023-02590-6.

  33. W. C. F. da Silva and K. Bakke, Eur. Phys. J. C 79, 559 (2019).

    Article  ADS  Google Scholar 

  34. W. C. F. da Silva, K. Bakke and R. L. L. Vitoria, Eur. Phys. J. C 79, 657 (2019).

    Article  ADS  Google Scholar 

  35. A. Boumali and H. Aounallah, Adv. High Energy Phys. 2018, 1031763 (2018).

    Article  Google Scholar 

  36. M. Hamzavi, S. M. Ikhdair, and B. I. Ita, Phys. Scr. 85, 045009 (2012).

    Article  ADS  Google Scholar 

  37. C. A. Onate, Afr. Rev. Phys. 8, 0046 (2013).

  38. B. I. Ita and A. I. Ikeuba, J. Atomic Mol. Phys. 2013, 582610 (2013).

    Google Scholar 

  39. R. L. Greene and C. Aldrich, Phys. Rev. A 14, 2363 (1976).

    Article  ADS  Google Scholar 

  40. M. R. Setare and S. Haidari, Phys. Scr. 18, 065201 (2010)

    Article  ADS  Google Scholar 

  41. W. C. Qiang, K. Li, and W. L. Chen, J. Phys. A: Math. Theor. 42, 205306 (2009).

    Article  ADS  Google Scholar 

  42. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988).

    Book  MATH  Google Scholar 

  43. M. de Montigny, H. Hassanabadi, J. Pinfold, and S. Zare, Eur. Phys. J. Plus 136, 788 (2021).

    Article  Google Scholar 

  44. M. de Montigny, J. Pinfold, S. Zare and H. Hassanabadi, Eur. Phys. J. Plus 137, 54 (2022).

    Article  Google Scholar 

  45. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Peshkin and A. Tonomura, The Aharonov–Bohm Effect (Lecture Notes Phys. Vol. 340, Springer, Berlin, Germany, 1989).

  47. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Vol. 52, Dover, New York, 1965).

    MATH  Google Scholar 

  48. L. J. Slater, Confluent Hypergeometric Functions (Cambridge University Press, Cambridge, 1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizuddin Ahmed.

Ethics declarations

The author declares that he has no conflicts of interest.

Appendix

Appendix

1.1 THE NIKIFOROV–UVAROV (NU) PARAMETRIC METHOD

The Nikiforov–Uvarov method is a helpful technique to calculate exact and approximate energy eigenvalues and wave functions of Schrödinger-like equations and other second-order differential equations of physical interest. According to this method, the wave functions of a second-order differential equation [42]

$$\frac{d^{2}\psi(s)}{ds^{2}}+\frac{(\alpha_{1}-\alpha_{2}\,s)}{s\,(1-\alpha_{3}\,s)}\frac{d\psi(s)}{ds}$$
$${}+\frac{(-\xi_{1}\,s^{2}+\xi_{2}\,s-\xi_{3})}{s^{2}\,(1-\alpha_{3}\,s)^{2}}\psi(s)=0$$
(A.1)

are given by

$$\psi(s)=s^{\alpha_{12}}(1-\alpha_{3}s)^{-\alpha_{12}-\frac{\alpha_{13}}{\alpha_{3}}}$$
$${}\times P^{(\alpha_{10}-1,\frac{\alpha_{11}}{\alpha_{3}}-\alpha_{10}-1)}_{n}(1-2\alpha_{3}s),$$
(A.2)

and that the energy eigenvalue equation holds,

$$\alpha_{2}\,n-(2\,n+1)\,\alpha_{5}+(2\,n+1)\,(\sqrt{\alpha_{9}}+\alpha_{3}\,\sqrt{\alpha_{8}})$$
$${}+n\,(n-1)\,\alpha_{3}+\alpha_{7}+2\,\alpha_{3}\,\alpha_{8}$$
$${}+2\,\sqrt{\alpha_{8}\,\alpha_{9}}=0.$$
(A.3)

The parameters \(\alpha_{4},\ldots,\alpha_{13}\) are obatined from the six parameters \(\alpha_{1},\ldots,\alpha_{3}\) and \(\xi_{1},\ldots,\xi_{3}\) as follows:

$$\alpha_{4}=\frac{1}{2}\,(1-\alpha_{1}),\quad\alpha_{5}=\frac{1}{2}\,(\alpha_{2}-2\,\alpha_{3}),$$
$$\alpha_{6}=\alpha^{2}_{5}+\xi_{1},\quad\alpha_{7}=2\,\alpha_{4}\,\alpha_{5}-\xi_{2},$$
$$\alpha_{8}=\alpha^{2}_{4}+\xi_{3},\quad\alpha_{9}=\alpha_{6}+\alpha_{3}\,\alpha_{7}+\alpha^{2}_{3}\,\alpha_{8},$$
$$\alpha_{10}=\alpha_{1}+2\,\alpha_{4}+2\,\sqrt{\alpha_{8}},$$
$$\alpha_{11}=\alpha_{2}-2\,\alpha_{5}+2\,(\sqrt{\alpha_{9}}+\alpha_{3}\,\sqrt{\alpha_{8}}),$$
$$\alpha_{12}=\alpha_{4}+\sqrt{\alpha_{8}},$$
$$\alpha_{13}=\alpha_{5}-(\sqrt{\alpha_{9}}+\alpha_{3}\,\sqrt{\alpha_{8}}).$$
(A.4)

In a special case where \(\alpha_{3}=0\), we find

$$\lim_{\alpha_{3}\to 0}P^{(\alpha_{10}-1,\frac{\alpha_{11}}{\alpha_{3}}-\alpha_{10}-1)}_{n}\,(1-2\alpha_{3}\,s)$$
$${}=L^{\alpha_{10}-1}_{n}(\alpha_{11}\,s),$$
(A.5)

and

$$\lim_{\alpha_{3}\to 0}(1-\alpha_{3}\,s)^{-\alpha_{12}-\frac{\alpha_{13}}{\alpha_{3}}}=e^{\alpha_{13}\,s}.$$
(A.6)

Therefore the wave function from (A.2) becomes

$$\psi(s)=s^{\alpha_{12}}\,e^{\alpha_{13}\,s}\,L^{\alpha_{10}-1}_{n}(\alpha_{11}\,s),$$
(A.7)

where \(L^{(\beta)}_{n}(x)\) denotes the generalized Laguerre polynomial.

The energy eigenvalues equation reduces to

$$n\,\alpha_{2}-(2\,n+1)\,\alpha_{5}+(2\,n+1)\,\sqrt{\alpha_{9}}+\alpha_{7}$$
$${}+2\,\sqrt{\alpha_{8}\,\alpha_{9}}=0.$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F. Topological Effects with Inverse Quadratic Yukawa Plus Inverse Square Potential on Eigenvalue Solutions. Gravit. Cosmol. 29, 232–239 (2023). https://doi.org/10.1134/S0202289323030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323030039

Navigation