Skip to main content
Log in

Theoretical Mass Estimates for the Mira-Type Variable R Hydrae

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Calculations of stellar evolution at initial abundances of helium \(Y=0.28\) and heavier elements \(Z=0.014\) were done for stars with masses on the main sequence \(1.7\;M_{\odot}\leq M_{\textrm{ZAMS}}\leq 5.2\;M_{\odot}\). Evolutionary sequences corresponding to the AGB stage were used for modelling the pulsation period decrease observed for almost two centuries in the Mira-type variable R Hya. Diminution of the period from \(\Pi\approx\) 495 d in the second half of the eighteenth century to \(\Pi\approx 380\) d in the 1950s is due to stellar radius decrease accompanying dissipation of the radiation–diffusion wave generated by the helium flash. For all the history of its observations R Hya was the fundamental mode pulsator. The best agreement with observations is obtained for eight evolutionary models with initial mass \(M=4.8\;M_{\odot}\) and the mass loss rate parameter of the Blöcker formula \(0.03\leq\eta_{\textrm{B}}\leq 0.07\). Theoretical mass estimates of R Hya are in the range \(4.44\;M_{\odot}\leq M\leq 4.63\;M_{\odot}\), whereas the mean stellar radius (\(421\;R_{\odot}\leq\bar{R}\leq 445\;R_{\odot}\)) corresponding to the pulsation period \(\Pi\approx 380\) d agrees well with measurements of the angular diameter by methods of the optical interferometric imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. M. Andriantsaralaza, S. Ramstedt, W. H. T. Vlemmings, and E. de Beck, Astron. Astrophys. 667, A74 (2022).

    Article  ADS  Google Scholar 

  2. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  3. T. Blöcker, Astron. Astrophys. 297, 727 (1995).

    ADS  Google Scholar 

  4. E. Böhm-Vitense, Zeitschr. Astrophys. 46, 108 (1958).

    ADS  Google Scholar 

  5. A. J. Cannon and E. C. Pickering, Ann. Harvard College Observ. 55, 95 (1909).

    ADS  Google Scholar 

  6. S. C. Chandler, Astron. Nachr. 103, 225 (1882).

    Article  ADS  Google Scholar 

  7. R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F. K. Thielemann, and M. Wiescher, Astrophys. J. Suppl. Ser. 189, 240 (2010).

    Article  ADS  Google Scholar 

  8. Yu. A. Fadeyev, Astron. Lett. 39, 306 (2013).

    Article  ADS  Google Scholar 

  9. Yu. A. Fadeyev, Mon. Not. R. Astron. Soc. 514, 5996 (2022).

    Article  ADS  Google Scholar 

  10. M. W. Feast, I. S. Glass, P. A. Whitelock, and R. M. Catchpole, Mon. Not. R. Astron. Soc. 241, 375 (1989).

    Article  ADS  Google Scholar 

  11. B. A. Gould, Astron. Nachr. 102, 341 (1882).

    ADS  Google Scholar 

  12. C. A. Haniff, M. Scholz, and P. G. Tuthill, Mon. Not. R. Astron. Soc. 276, 640 (1995).

    Article  ADS  Google Scholar 

  13. F. Herwig, Astron. Astrophys. 360, 952 (2000).

    ADS  Google Scholar 

  14. F. Herwig, N. Langer, and M. Lugaro, Astrophys. J. 593, 1056 (2003).

    Article  ADS  Google Scholar 

  15. D. Hoffleit, J. Am. Assoc. Var. Star Observ. 25, 115 (1997).

    Google Scholar 

  16. E. M. L. Humphreys, M. D. Gray, J. A. Yates, and D. Field, Mon. Not. R. Astron. Soc. 287, 663 (1997).

    Article  ADS  Google Scholar 

  17. M. J. Ireland, P. G. Tuthill, T. R. Bedding, J. G. Robertson, and A. P. Jacob, Mon. Not. R. Astron. Soc. 350, 365 (2004).

    Article  ADS  Google Scholar 

  18. R. Kuhfuß, Astron. Astrophys. 160, 116 (1986).

    ADS  Google Scholar 

  19. T. Lebzelter and J. Hron, Astron. Astrophys. 411, 533 (2003).

    Article  ADS  Google Scholar 

  20. B. M. Lewis, P. David, and A. M. le Squeren, Astron. Astrophys. Suppl. Ser. 111, 237 (1995).

    ADS  Google Scholar 

  21. S. J. Little, I. R. Little-Marenin, and W. H. Bauer, Astron. J. 94, 981 (1987).

    Article  ADS  Google Scholar 

  22. H. Ludendorff, Astron. Nachr. 203, 117 (1916).

    Article  ADS  Google Scholar 

  23. H. Maehara, Publ. Astron. Soc. Jpn. 23, 313 (1971).

    ADS  Google Scholar 

  24. P. W. Merrill, Astrophys. J. 103, 6 (1946).

    Article  ADS  Google Scholar 

  25. P. W. Merrill, Publ. Astron. Soc. Pacif. 69, 77 (1957).

    Article  ADS  Google Scholar 

  26. R. Müller, Astron. Nachr. 237, 81 (1929).

    Article  ADS  Google Scholar 

  27. A. V. Nielsen, Astron. Nachr. 227, 141 (1926).

    Article  ADS  Google Scholar 

  28. M. Ya. Orlov and A. V. Shavrina, Nauch. Inform. Astron. Sov. AN SSSR 56, 97 (1984).

    Google Scholar 

  29. B. Paxton, R. Smolec, J. Schwab, A. Gautschy, L. Bildsten, M. Cantiello, A. Dotter, R. Farmer, J. A. Goldberg, A. S. Jermyn, S. M. Kanbur, P. Marchant, A. Thoul, R. H. D. Townsend, W. M. Wolf, M. Zhang, and F. X. Timmes, Astrophys. J. Suppl. Ser. 243, 10 (2019).

    Article  ADS  Google Scholar 

  30. M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, G. Rockefeller, C. Fryer, F. X. Timmes, C. Ritter, A. Heger, S. Jones, U. Battino, A. Dotter, R. Trappitsch, S. Diehl, U. Frischknecht, A. Hungerford, G. Magkotsios, C. Travaglio, and P. Young, Astrophys. J. Suppl. Ser. 225, 24 (2016).

    Article  ADS  Google Scholar 

  31. D. Reimers, Problems in Stellar Atmospheres and Envelopes, Ed. by B. Baschek, W. H. Kegel, and G. Traving (Springer, New York, 1975), p. 229.

    Google Scholar 

  32. N. N. Samus’, E. V. Kazarovets, O. V. Durlevich, N. N. Kireeva, and E. N. Pastukhova, Astron. Rep. 61, 80 (2017).

    Article  ADS  Google Scholar 

  33. J. F. J. Schmidt, Astron. Nachr. 65, 173 (1865).

    Article  ADS  Google Scholar 

  34. H. Takaba, I. Takahiro, M. Takeshi, and S. Deguchi, Publ. Astron. Soc. Jpn. 53, 517 (2001).

    Article  ADS  Google Scholar 

  35. P. R. Wood and D. M. Zarro, Astrophys. J. 247, 247 (1981).

    Article  ADS  Google Scholar 

  36. H. C. Woodruff, P. G. Tuthill, J. D. Monnier, M. J. Ireland, T. R. Bedding, S. Lacour, W. C. Danchi, and M. Scholz, Astrophys. J. 673, 418 (2008).

    Article  ADS  Google Scholar 

  37. A. Ya’ari and Y. Tuchman, Astrophys. J. 456, 350 (1996).

    Article  ADS  Google Scholar 

  38. A. A. Zijlstra, T. R. Bedding, and J. A. Mattei, Mon. Not. R. Astron. Soc. 334, 498 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fadeyev.

Additional information

Translated by the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeyev, Y.A. Theoretical Mass Estimates for the Mira-Type Variable R Hydrae. Astron. Lett. 49, 167–174 (2023). https://doi.org/10.1134/S1063773723040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723040023

Keywords:

Navigation