Skip to main content
Log in

Interpretation of deformation microstructures in syntectonic granite: insights from Phulad granite, Rajasthan, NW India

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Previous work reveals a syn-tectonic granite named Phulad granite, which is emplaced (∼820 Ma) in the western part of the South Delhi Fold Belt (SDFB) along and across the Phulad Shear Zone (PSZ). There is a lack of information about the detailed microstructural study, differential stress and strain rate variation from this granite body. These pieces of information are crucial in developing deformational history associated with the shear zone deformation. The granite preserves a variety of dynamic recrystallization from grain boundary bulging (BLG) to sub-grain rotation (SGR) to grain boundary migration (GBM). There is a variation in the fractal dimension (D) in the granite, such as higher D at the shear zone, and with increasing distance from the shear zone, D values are low. Strain rates (10−7.52 s−1–10−7.99 s−1) are much higher than the geological strain rates in the natural systems. The strain rates indicate that the method to calculate strain rate using the D value (1.007 ± 0.017 to 1.031 ± 0.022) is to some extent erroneous or fails to give geologically reasonable value for high-temperature syn-tectonic granite such as Phulad granite. Based on the quartz piezometer, our findings reveal variation in flow stress with distance from the shear zone, which depends on the grain size. Volume gain and mass balance calculations indicate that fluid incorporation at the shear zone reduces deformation temperature, which also validates the findings from the microstructural study. These microstructures and grain size calculations are discussed to interpret the deformation mechanism, various stress-strain pattern and evolution of the Phulad granite throughout the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ague, J.J., 1994, Mass transfer during Barrovian metamorphism of pelites, southcentral Connecticut. II: Channelized fluid flow and the growth of staurolite and kyanite. American Journal of Science, 294, 1061–1134.

    Article  Google Scholar 

  • Altenberger, U. and Wilhelm, S., 2000, Ductile deformation of K-feld-spar in dry eclogite facies shear zones in the Bergen Arcs, Norway. Tectonophysics, 320, 107–121.

    Article  Google Scholar 

  • Bailey, C.M., Simpson, C., and De Paor, D.G., 1994, Volume loss and tectonic flattening strain in granitic mylonites from the Blue Ridge province, central Appalachians. Journal of Structural Geology, 16, 1403–1416.

    Article  Google Scholar 

  • Bodorkos, S., Cawood, P.A., and Oliver, N.H.S., 2000, Timing and duration of synmagmatic deformation in the Mabel Downs Tonalite, northern Australia. Journal of Structural Geology, 22, 1181–1198.

    Article  Google Scholar 

  • Bose, N., Dutta, D., and Mukherjee, S., 2018, Role of grain-size in phyl-lonitisation: insights from mineralogy, microstructures, strain analyses and numerical modeling. Journal of Structural Geology, 112, 39–52.

    Article  Google Scholar 

  • Bose, N. and Mukherjee, S., 2020, Estimation of deformation temperatures, flow stresses and strain rates from an intra-continental shear zone: The Main Boundary Thrust, NW Himalaya (Uttarakhand, India). Marine and Petroleum Geology, 112, 104094. https://doi.org/10.1016/j.marpetgeo.2019.104094

    Article  Google Scholar 

  • Breeding, C.M. and Ague, J.J., 2002, Slab-derived fluids and quartz vein formation in an accretionary prism, Otago Schist, New Zealand. Geology, 30, 499–502.

    Article  Google Scholar 

  • Büttner, S.H., 1999, The geometric evolution of structures in granite during continuous deformation from magmatic to solid-state conditions: an example from the central European Variscan Belt. American Mineralogist, 84, 1781–1792.

    Article  Google Scholar 

  • Chatterjee, S.M., Roy Choudhury, M., and Das, S., 2016, Reaction enhanced channelized fluid-flux along mid crustal shear zone: an example from Mesoproterozoic Phulad Shear Zone, Rajasthan, India. Journal of Earth System Science, 125, 1321–1328. https://doi.org/10.1007/s12040-016-0740-8

    Article  Google Scholar 

  • Chatterjee, S.M., Roy Choudhury, M., Das, S., and Roy, A., 2017, Significance and dynamics of the Neoproterozoic (810 Ma) Phulad Shear Zone, Rajasthan, NW India. Tectonics, 36, 1432–1454. https://doi.org/10.1002/2017TC004554

    Article  Google Scholar 

  • Chatterjee, S.M., Roy, A., Manna, A., and Sarkar, A.K., 2023, Early Neop-roterozoic tectonics in the Marwar Crustal Block, NW India, the relevance of the Phulad Shear Zone, and implications for Rodinia reconstruction. Geosphere, 19, 1080–1102. https://doi.org/10.1130/GES02565.1

    Article  Google Scholar 

  • Chatterjee, S.M., Sarkar, A.K., Roy, A., and Manna, A., 2020, Mid-Neo-proterozoic tectonics of northwestern India: evidence of stitching pluton along 810 Ma Phulad Shear Zone. Tectonics, 39, e2019TC005902. https://doi.org/10.1029/2019TC005902

    Article  Google Scholar 

  • Condie, K.C. and Sinha, A.K., 1996, Rare earth and other trace element mobility during mylonitization: a comparison of the Brevard and Hope Valley shear zones in the Appalachian Mountains, USA. Journal of Metamorphic Geology, 14, 213–226.

    Article  Google Scholar 

  • Cross, A.J., Ellis, S., and Prior, D.J., 2015b, A phenomenological numerical approach for investigating grain size evolution in ductiley deforming rocks. Journal of Structural Geology, 76, 22–34. https://doi.org/10.1016/j.jsg.2015.04.001

    Article  Google Scholar 

  • Cross, A.J., Kidder, S., and Prior, D.J., 2015a, Using microstructures and TitaniQthermobarometry of quartz sheared around garnet porphy-roclasts to evaluate microstructural evolution and constrain an Alpine Fault Zone geotherm. Journal of Structural Geology, 75, 17–31. https://doi.org/10.1016/j.jsg.2015.02.012

    Article  Google Scholar 

  • Durand, C., Oliot, E., Marquer, D., and Sizun, J.P., 2015, Chemical mass transfer in shear zones and metacarbonate xenoliths: a comparison of four mass balance approaches. European Journal of Mineralogy, 27, 731–754.

    Article  Google Scholar 

  • Fazio, E., Fiannacca, P., Russo, D., and Cirrincione, R., 2020, Submagmatic to solid-state deformation microstructures recorded in cooling granitoids during exhumation of ate-Variscan crust in Northeastern Sicily. Geosciences, 10, 311. https://doi.org/10.3390/geosci-ences10080311

    Article  Google Scholar 

  • Fitz Gerald, J.D. and Harrison, T.M., 1993, Argon diffusion domains in K-feldspar I: microstructures in MH-10. Contributions to Mineralogy and Petrology, 113, 367–380. https://doi.org/10.1007/BF00286928

    Article  Google Scholar 

  • Ghosh, S., Bose, S., Mandal, N., and Dasgupta, S., 2016, Dynamic recrystallization mechanisms and their transition in the Daling Thrust (DT) zone, Darjeeling–Sikkim Himalaya. Tectonophysics, 674, 166–181.

    Article  Google Scholar 

  • Ghosh, S.K., Hazra, S., and Sengupta, S., 1999, Planar, non-planar and refolded sheath folds in Phulad shear zone, Rajasthan, India. Journal of Structural Geology, 21, 1715–1729. https://doi.org/10.1016/S0191-8141(99)00118-2

    Article  Google Scholar 

  • Grant, J.A., 1986, The isocon diagram; a simple solution to Gresens’ equation for metasomatic alteration. Economic Geology, 81, 1976–1982. https://doi.org/10.2113/gsecongeo.818.1976

    Article  Google Scholar 

  • Grant, J.A., 2005, Isocon analysis: a brief review of the method and applications. Physics and Chemistry of the Earth, 30, 997–1004. https://doi.org/10.1016/j.pce.2004.11.003

    Article  Google Scholar 

  • Greiling, R.O., de Wall, H., Sadek, M.F., and Dietl, C., 2014, Late Pan-African granite emplacement during regional deformation, evidence from magnetic fabric and structural studies in the Hammamat–Atalla area, central Eastern Desert of Egypt. Journal of African Earth Sciences, 99, 109–121.

    Article  Google Scholar 

  • Gresens, R.L., 1967, Composition-volume relationships of metasomatism. Chemical Geology, 2, 47–65.

    Article  Google Scholar 

  • Guillope, M. and Poirier, J.P., 1979, Dynamic recrystallization during creep of single-crystalline halite: an experimental study. Journal of Geophysical Research, 84, 5557–5567.

    Article  Google Scholar 

  • Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqbaluddin, B.P., Prasad, B., Sahai, T.N., and Sharma, S.B., 1980, Lithostraigraphic map of Aravalli Region, southern Rajasthan and northeastern Gujrat (1:1,000,000). Geological Survey of India, Hyderabad.

    Google Scholar 

  • Heron, A.M., 1953, The geology of central Rajputana. Memoirs of the Geological Survey of India, Calcutta, 79, 389 p.

  • Hirth, G. and Tullis, J., 1992, Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14, 145–159.

    Article  Google Scholar 

  • Holyoke, C.W. and Kronenberg, A.K., 2010, Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophysics, 494, 17–31. https://doi.org/10.1016/j.tecto.2010.08.001

    Article  Google Scholar 

  • Kalita, P., Goswami, T.K., Phukon, P., and Srivastava, H.B., 2022, Deformation temperature, differential stress, and strain rate variation across the Bomdila Gneiss, western Arunachal Himalaya, India. International Journal of Earth Sciences, 111, 607–622. https://doi.org/10.1007/s00531-021-02132-7

    Article  Google Scholar 

  • Karlstrom, K.E., Miller, C.F., Kingsbury, J.A., and Wooden, J.L., 1993, Pluton emplacement along an active ductile thrust zone, Piute Mountains, southeastern California: interaction between deformational and solidification processes. Geological Society of America Bulletin, 105, 213–230.

    Article  Google Scholar 

  • Kruhl, J.H. and Nega, M., 1996, The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau, 85, 38–43.

    Article  Google Scholar 

  • Louis, E., Guinea, F., and Flore, F., 1986, The fractal nature of fracture. In: Pietronero, L. and Tosatti, E. (eds.), Proceedings of the 6th Trieste International Symposium on Fractals in Physics, International Center for Theoretical Physics (ICTP), Trieste, Italy, Jul. 9–12, 1985, p. 177–180. https://doi.org/10.1016/B978-0-444-86995-1.50035-4

    Google Scholar 

  • Maggi, M., Rossetti, F., Ranalli, G., and Theye, T., 2014, Feedback between fluid infiltration and rheology along a regional ductile-to-brittle shear zone: the East Tenda Shear Zone (Alpine Corsica). Tectonics, 33, 253–280. https://doi.org/10.1002/2013TC003370

    Article  Google Scholar 

  • Mamtani, M.A. and Greiling, R.O., 2010, Serrated quartz grain boundarie, temperature and strain rate: testing fractal techniques in a syn-tectonic granite. In: Spalla, M.I., Marotta, A.M., and Gosso, G. (eds.), Advances in Interpretation of Geological Processes: Refinement of Multi-scale Data and Integration in Numerical Modelling. Geological Society, London, Special Publications, 332, p. 35–48, https://doi.org/10.1144/SP332.3

    Google Scholar 

  • Mandelbrot, B.B., 1983, The Fractal Geometry of Nature. Freeman, New York, 468 p.

    Book  Google Scholar 

  • Martins, H.C.B., Sant’Ovaia, H., and Noronha, F., 2013, Late-Variscan emplacement and genesis of the Vieira do Minho composite pluton, Central Iberian Zone: constraints from U-Pb zircon geochro-nology, AMS data and Sr-Nd-O isotope geochemistry. Lithos, 162–163, 221–235.

    Article  Google Scholar 

  • Mukherjee, S., 2011, Mineral fish: their morphological classification, usefulness as shear sense indicators and genesis. International Journal of Earth Sciences, 100, 1303–1314. https://doi.org/10.1007/s00531-010-0535-0

    Article  Google Scholar 

  • Mukherjee, S., 2017, Review on symmetric structures in ductile shear zones. International Journal of Earth Sciences, 106, 1453–1468.

    Article  Google Scholar 

  • Mulchrone, K.F. and Mukherjee, S., 2016, Kinematics and shear heat pattern of ductile simple shear zones with slip boundary condition. International Journal of Earth Sciences, 105, 1015–1020. https://doi.org/10.1007/s00531-015-1206-y

    Article  Google Scholar 

  • Newman, J. and Mitra, G., 1993, Lateral variations in mylonite zone thickness as influenced by fluid-rock interactions, Linville falls fault, North Carolina. Journal of Structural Geology, 15, 849–863. https://doi.org/10.1016/0191-8141(93)90180-I

    Article  Google Scholar 

  • O’Hara, K., 1988, Fluid flow and volume loss during mylonitization: an origin for phyllonite in an overthrust setting NC, USA. Tectonophysics, 156, 21–36.

    Article  Google Scholar 

  • Parsons, A.J., Coleman, M.J., Ryan, J.J., Zagorevski, A., Joyce, N.L., Gibson, H.D., and Larson, K.P., 2018, Structural evolution of a crustal-scale shear zone through a decreasing temperature regime: The Yukon River shear zone, Yukon-Tanana terrane, northern Cordillera. Lithosphere, 10, 760–782.

    Google Scholar 

  • Passchier, C.W. and Trouw, R.A.J., 1996, Microtectonics. Springer, Berlin, Germany, 289 p.

    Google Scholar 

  • Passchier, C.W. and Trouw, R.A.J., 2005, Microtectonics (2nd edition). Springer, Berlin, Germany, 371 p.

    Google Scholar 

  • Paterson, S.R. and Tobisch, O.T., 1992, Rates of geological processes in magmatic arcs: implications for the timing and nature of pluton emplacement and wall-rock deformation. Journal of Structural Geology, 14, 291–300.

    Article  Google Scholar 

  • Petford, N., Cruden, A.R., McCaffrey, K.J.W., and Vigneresse, J.L., 2000, Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408, 669–673.

    Article  Google Scholar 

  • Piffner, O.A. and Ramsay, J.G., 1982, Constraints on geological strain rates: arguments from finite strain states of naturally deformed rock. Journal of Geophysical Research: Solid Earth, 87, 311–321. https://doi.org/10.1029/JB087iB01p00311

    Article  Google Scholar 

  • Poirier, J.P., 1985, Creep of Crystals: High-temperature Deformation Processes in Metals, Ceramics, and Minerals. Cambridge University Press, Cambridge, UK, 260 p.

    Book  Google Scholar 

  • Ramsay, J.G., 1980, Shear zone geometry: a review. Journal of Structural Geology, 2, 83–89.

    Article  Google Scholar 

  • Ring, U., 1999, Volume loss, fluid flow, and coaxial versus noncoaxial deformation in retrograde, amphibolite facies shear zones, northern Malawi, east-central Africa. GSA Bulletin, 111, 123–142.

    Article  Google Scholar 

  • Rolland, Y., Cox, S., Boullier, A.M., Pennacchioni, G., and Mancktelow, N., 2003, Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters, 214, 203–219. https://doi.org/10.1016/S0012-821X(03)00372-8

    Article  Google Scholar 

  • Rosenberg, C.L. and Stünitz, H., 2003, Deformation and recrystallization of plagioclase along a temperature gradient: an example from the Bergell tonalite. Journal of Structural Geology, 25, 389–408. https://doi.org/10.1016/S0191-8141(02)00036-6

    Article  Google Scholar 

  • Roy Choudhury, M., Das, S., Chatterjee, S.M., and Sengupta, S., 2016, Deformation of footwall rock of Phulad Shear Zone, Rajasthan: evidence of transpressional shear zone. Journal of Earth System Science, 125, 1033–1040. https://doi.org/10.1007/s12040-016-0713-y

    Article  Google Scholar 

  • Roy, A.B. and Jakhar, S.R., 2002, Geology of Rajasthan (Northwest India) Precambrian to Recent. Scientific Publishers, Jodhpur, India, 421 p.

    Google Scholar 

  • Sengupta, S. and Chatterjee, S.M., 2016, Microstructural variation in quartzofeldspathic mylonites and vorticity analysis using rotating porphyroclasts in Phulad Shear Zone, Rajasthan, India. In: Mukherjee, S. and Mulchrone, K.F. (eds.), Ductile Shear Zones from Micro-to Macro-scales. Wiley Blackwell, p. 128–140. https://doi.org/10.1002/9781118844953.ch9

  • Stipp, M., Stünitz, H., Heilbronner, R., and Schmid, S.M., 2002a, The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 °. Journal of Structural Geology, 24, 1861–1884.

    Article  Google Scholar 

  • Stipp, M., Stünitz, H., Heilbronner, R., and Schmid, S.M., 2002b, Dynamic recrystallisation of quartz: correlation between natural and experimental conditions. In: De Meer, S., Drury, M.R., De Bresser, J.H.P., and Pennock, G.M. (eds.), Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geological Society, London, Special Publications, 200, p. 171–190. https://doi.org/10.1144/GSL.SP.2001.200.01.11

    Google Scholar 

  • Stipp, M. and Tullis, J., 2003, The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30, 2088. https://doi.org/10.1029/2003GL018444

    Article  Google Scholar 

  • Stipp, M., Tullis, J., and Behrens, H., 2006, Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer. Journal of Geophysical Research Atmospheres, 111, B04201. https://doi.org/10.1029/2005JB003852

    Article  Google Scholar 

  • Stipp, M., Tullis, J., Scherwath, M., and Behrmann, J.H., 2010, A new perspective on paleo-piezometry: dynamically recrystallized grain size distributions indicate mechanism changes. Geology, 38, 759–762. https://doi.org/10.1130/G31162.1

    Article  Google Scholar 

  • Takahashi, M., Nagahama, H., Masuda, T., and Fujimura, A., 1998, Fractal analysis of experimentally, dynamically recrystallized quartz grains and its possible application as a strain rate meter. Journal of Structural Geology, 20, 269–275.

    Article  Google Scholar 

  • Tartèse, R., Boulvais, P., Poujol, M., Chevalier, T., Paquette, J., Ireland, T.R., and Deloule, E., 2012, Mylonites of the South Armorican Shear Zone: insights for crustal-scale fluid flow and water-rock interaction processes. Journal of Geodynamics, 56, 86–107. https://doi.org/10.1016/j.jog.2011.05.003

    Article  Google Scholar 

  • Trépied, L., Doukhan, J.C., and Paquet, J., 1980, Subgrain boundaries in quartz theoretical analysis and microscopic observations. Physics and Chemistry of Minerals, 5, 201–218. https://doi.org/10.1007/BF00348570

    Article  Google Scholar 

  • Tullis, J. and Yund, R.A., 1991, Diffusion creep in feldspar aggregates: experimental evidence. Journal of Structural Geology, 13, 987–1000.

    Article  Google Scholar 

  • Twiss, R.J., 1977, Theory and applicability of a recrystallized grain size paleopiezometer. Pure and Applied Geophysics, 115, 227–244.

    Article  Google Scholar 

  • Twiss, R.J. and Moores, E.M., 2007, Structural Geology (2nd edition). W.H. Freeman, New York, USA, 532 p.

    Google Scholar 

  • Urai, J.L., Means, W.D., and Lister, G.S., 2011, Dynamic recrystallization of minerals. In: Hobbs, B.E. and Heard, H.C. (eds.), Mineral and Rock Deformation: Laboratory Studies. Geophysical Monograph Series, American Geophysical Union, 36, p. 161–199.

  • Vegas, N., Rodriguez, Cuevas, J., Siebel, W., Esteban, J.J., Túbia, J.M., and Basei, M., 2011, The sphene-centered ocellar texture: an effect of grain-supported flow and melt 762 migration in a hyperdense magma mush. The Journal of Geology, 119, 143–157.

    Article  Google Scholar 

  • Vernon, R.H., 1976, Metamorphic Processes: Reactions and Microstructure Development. Springer, Dordrecht, Netherlands, 247 p.

    Google Scholar 

  • Vernon, R.H., 2004, A Practical Guide to Rock Microstructure. Cambridge University Press, Cambridge, UK, 606 p.

    Book  Google Scholar 

  • Vigneresse, J.L., 2006, Granitic batholiths: from pervasive and continuous melting in the lower crust to discontinuous and spaced plutonism in the upper crust. Transactions of the Royal Society of Edinburgh: Earth Sciences, 97, 311–324.

    Article  Google Scholar 

  • Yonkee, W.A., Parry, W.T., and Bruhn, R.L., 2003, Relations between progressive deformation and fluid-rock interaction during shear-zone growth in a basement-cored thrust sheet, Sevier orogenic belt, Utah. American Journal of Science, 303, 1–59. https://doi.org/10.2475/ajs.303.1.1

    Article  Google Scholar 

  • Zibra, I., Weinberg, R.F., and Peternell, M., 2020, Neoarchean synmagmatic crustal extrusion in the transpressional Yilgarn Orogen. Tectonics, 39, e2019TC005947. https://doi.org/10.1029/2019TC005947

    Article  Google Scholar 

Download references

Acknowledgments

A.K.S. acknowledges the Department of Science and Technology, New Delhi (Govt. of India) for the Inspire Fellowship and S.M.C. acknowledges the Department of Science and Technology, New Delhi (Govt. of India) for funding the Extra Mural Research Project (Scheme EMR/2015/000204) and CSIR, India (Scheme No. 24(0359)/19/EMR-II). The authors are grateful to the associate editor Raehee Han for handling this manuscript. The authors thank Prof. Soumyajit Mukherjee and two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Kumar Sarkar.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A.K., Manna, A., Chatterjee, S.M. et al. Interpretation of deformation microstructures in syntectonic granite: insights from Phulad granite, Rajasthan, NW India. Geosci J 27, 735–752 (2023). https://doi.org/10.1007/s12303-023-0028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-023-0028-3

Key words

Navigation