Skip to main content
Log in

A Simulation and Thermodynamic Improvement of Methanol Production Process with Economic Analysis: Natural Gas Vapor Reforming and Utilization of Carbon Capture

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Power plant gases are a source of carbon dioxide emissions that can be converted by thermo-chemical as an opportunity to produce chemical products such as methanol. In this study, the thermodynamic improvement of the methanol production process through natural gas vapor reforming and utilization of recycled carbon dioxide as a secondary source of carbon has been done along with economic and environmental analyzes. Sensitivity analysis showed that the optimal flow rate of carbon dioxide for injection into the methanol synthesis reactor should be 580 kmol/h. So that the stoichiometric number of the synthesized gas is controlled in an appropriate amount of 2, and the carbon efficiency process reaches 85%. Energy analysis was performed for the process, and it was found that the overall energy efficiency is 77.26%, which has a significant advantage compared to previous works. The use of an integrated network of heat exchangers has led to the recovery of 440.89 gigajoules per hour of energy, which has a great impact on improving the thermodynamics and reducing the intensity of process pollution. Based on the environmental analysis, the use of flue gas flow as a heat source for heating in reboilers of methanol separation towers has caused the global heating potential parameter for the pro\({\text{k}}^{'}\)posed process is 0.265\(\frac{{{\text{k}}{{{\text{g}}}_{{{\text{C}}{{{\text{O}}}_{{2,{\text{eq}}}}}}}}}}{{{\text{k}}{{{\text{g}}}_{{{\text{MeOH}}}}}}}\). Also, the results of the exergy evaluation indicated that the presented process, with an overall exergy efficiency of 77.32%, has a good position among the other technologies. According to the study, the total degraded exergy is 238468.21 kW, which is the equipment and process parts, burner reformer and synthesis gas production sector with the share of 30 and 47%, respectively, have the highest exergy destruction. An economical estimate was made for the proposed project, and it was showed that the annual profit of the project is 4630926/033 $, the total investment cost is 96820215/07$, the annual revenue is 60673626/03$, and the minimum selling price of the product as a competitive parameter is 0/099\(\frac{{{\text{USD}}}}{{{\text{k}}{{{\text{g}}}_{{{\text{Methanol}}}}}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Fiedler, E., Grossmann, G., Kersebohm, D.B., Weiss, G., Witte, C., and Grossman, G., Methanol, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000.

    Google Scholar 

  2. Jordan, J., World methanol overview: 2007 and beyond, Hydrocarbon Process., 2008, vol. 87, no. 4, pp. 61–68.

    Google Scholar 

  3. Alvarado, M., The changing face of the global methanol industry, IHS Chem. Bull. Insights, 2016, no. 3, pp. 10–11. https://cdn.ihs.com/www/pdf/IHS-Chemical-Bulletin-2016-Issue-3.pdf. Cited November 21, 2017.

  4. Yang, C. and Jackson, R.B., China’s growing methanol economy and its implications for energy and the environment, Energy Policy, 2012, vol. 41, pp. 878–884. https://doi.org/10.1016/j.enpol.2011.11.037

    Article  Google Scholar 

  5. Jung, E.H., Jung, U.H., Yang, T.H., Peak, D.H., Jung, D.H., and Kim, S.H., Methanol crossover through PtRu/Nafion composite membrane for a direct methanol fuel cell, Int. J. Hydrogen Energy, 2007, vol. 32, no. 7, pp. 903–907. https://doi.org/10.1016/j.ijhydene.2006.12.014

    Article  CAS  Google Scholar 

  6. Zou, C., Zhao, Q., Zhang, G., and Xiong, B., Energy revolution: From a fossil energy era to a new energy era, Nat. Gas Ind. B, 2016, vol. 3, no. 1, pp. 1–11. https://doi.org/10.1016/j.ngib.2016.02.001

    Article  Google Scholar 

  7. Hamelinck, C.N., Faaij, A.P.C., den Uil, H., and Boerrigter, H., Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential, Energy, 2004, vol. 29, no. 11, pp. 1743–1771. https://doi.org/10.1016/j.energy.2004.01.002

    Article  CAS  Google Scholar 

  8. Swain, P.K., Das, L.M., and Naik, S.N., Biomass to liquid: A prospective challenge to research and development in 21st century, Renewable Sustainable Energy Rev., 2011, vol. 15, no. 9, pp. 4917–4933. https://doi.org/10.1016/j.rser.2011.07.061

    Article  CAS  Google Scholar 

  9. Olah, G.A., Goeppert, A., and Prakash, G.K.S., Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 2009, vol. 74, no. 2, pp. 487–498. https://doi.org/10.1021/jo801260f

    Article  CAS  PubMed  Google Scholar 

  10. Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today, 2006, vol. 115, nos. 1–4, pp. 2–32. https://doi.org/10.1016/j.cattod.2006.02.029

  11. Minutillo, M. and Perna, A., A novel approach for treatment of CO2 from fossil fired power plants, Part A: The integrated systems ITRPP, Int. J. Hydrogen Energy, 2009, vol. 34, no. 9, pp. 4014–4020. https://doi.org/10.1016/j.ijhydene.2009.02.069

    Article  CAS  Google Scholar 

  12. Andrés, M.-B., Boyd, T., Grace, J.R., Lim, C.J., Gulamhusein, A., Wan, B., Kurokawa, H., and Shirasaki, Y., In-situ CO2 capture in a pilot-scale fluidized-bed membrane reformer for ultra-pure hydrogen production, Int. J. Hydrogen Energy, 2011, vol. 36, no. 6, pp. 4038–4055. https://doi.org/10.1016/j.ijhydene.2010.09.091

    Article  CAS  Google Scholar 

  13. Lashof, D.A. and Ahuja, D.R., Relative contributions of greenhouse gas emissions to global warming, Nature, 1990, vol. 344, no. 6266, pp. 529–531. 529e31. https://doi.org/10.1038/344529a0

  14. Cañete, B., Gigola, C.E., and Brignole, N.B., Synthesis gas processes for methanol production via CH4 reforming with CO2, H2O, and O2, Ind. Eng. Chem. Res., 2014, vol. 53, no. 17, pp. 7103–7112. https://doi.org/10.1021/ie404425e

    Article  CAS  Google Scholar 

  15. Van-Dal, É.S. and Bouallou, C., Design and simulation of a methanol production plant from CO2 hydrogenation, J. Cleaner Prod., 2013, vol. 57, pp. 38–45. https://doi.org/10.1016/j.jclepro.2013.06.008

    Article  CAS  Google Scholar 

  16. Kattel, S, Ramírez, P.J., Chen, J.G., Rodriguez, J.A., and Liu, P., Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts, Science, 2017, vol. 355, no. 6331, pp. 1296–1299. https://doi.org/10.1126/science.aal3573

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, C., Jun, K.-W., Kwak, G., Lee, Y.-J., and Park, H.-G., Efficient utilization of carbon dioxide in a gas-to-methanol process composed of CO2/steam-mixed reforming and methanol synthesis, J. CO 2 Util., 2016, vol. 16, pp. 1–7, doi . 2016.05.005https://doi.org/10.1016/j.jcou

  18. Zhang, C., Jun, K.-W., Gao, R., Kwak, G., and Park, H.-G., Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Technoeconomic analysis, Fuel, 2017, vol. 190, pp. 303–311. doi . 11.008https://doi.org/10.1016/j.fuel.2016

  19. Seddon, D., Volatility in the methanol market, Chem. Aust., 2017, pp. 36–37. https://chemaust.raci.org.au/ sites/default/files/pdf/2017/CiA_April%202017.pdf. Cited June 02, 2023.

  20. Razmi, A., Soltani, M., and Torabi, M., Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression–absorption refrigeration cycle: Energy and exergy analysis, Energy Convers. Manage., 2019, vol. 195, pp. 1199–1211. https://doi.org/10.1016/j.enconman.2019.05.065

    Article  CAS  Google Scholar 

  21. Blumberg, T., Morosuk, T., and Tsatsaronis, G., Exergy-based evaluation of methanol production from natural gas with CO2 utilization, Energy, 2017, vol. 141, pp. 2528–2539. https://doi.org/10.1016/j.energy.2017.06.140

    Article  CAS  Google Scholar 

  22. Li, H., Hong, H., Jin, H., and Cai, R., Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials, Appl. Energy, 2010, vol. 87, no. 9, pp. 2846–2853. https://doi.org/10.1016/j.apenergy.2009.07.001

    Article  CAS  Google Scholar 

  23. Song, C. and W. Pan, W., Tri-reforming of methane: A novel concept for synthesis of industrially useful syngas with desired H2/CO ratios using flue gas of power plants without CO2 pre-separation, Proc. ACS Natl. Meet. Book Abstr., 2004, vol. 227, no. 1.

  24. Song C., Chemicals, Fuels and Electricity from Coal. A Proposed Tri-generation Concept for Utilization of CO2 from Power Plants, Prepr. Am. Chem. Soc., 1999, pp. 159–163.

  25. Song, C., Tri-reforming: a new process for reducing CO2 emissions, Chem. Innovation, 2001, vol. 31, no. 1, pp. 21–26.

    CAS  Google Scholar 

  26. Halmann, M. and Steinfeld, A., Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide, Energy, 2006, vol. 31, no. 15, pp. 3171–3185. https://doi.org/10.1016/j.energy.2006.03.009

    Article  CAS  Google Scholar 

  27. Halmann, M. and Steinfeld, A., Thermoneutral tri-reforming of flue gases from coal- and gas-fired power stations, Catal. Today, 2006, vol. 115, nos. 1–4, pp. 170–178. https://doi.org/10.1016/j.cattod.2006.02.064

  28. Aboosadi, Z.A., Jahanmiri, A.H., and Rahimpour, M.R., Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method, Appl. Energy, 2011, vol. 88, no. 8, pp. 2691–2701. https://doi.org/10.1016/j.apenergy.2011.02.017

    Article  CAS  Google Scholar 

  29. Dwivedi, A., Gudi, R., and Biswas, P., An improved tri-reforming based methanol production process for enhanced CO2 valorization, Int. J. Hydrogen Energy, 2017, vol. 42, no. 36, pp.23227–23241. https://doi.org/10.1016/j.ijhydene.2017.07.166

    Article  CAS  Google Scholar 

  30. Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., and Ahmad, M.N., Catalyst design for dry reforming of methane: Analysis review, Renewable Sustainable Energy Rev., 2018, vol. 82, part 3, pp. 2570–2585. https://doi.org/10.1016/j.rser.2017.09.076

    Article  CAS  Google Scholar 

  31. Song, C. and Pan, W., Tri-reforming of methane: A novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios, Catal. Today, 2004, vol. 98, no. 4, pp. 463–484. https://doi.org/10.1016/j.cattod.2004.09.054

    Article  CAS  Google Scholar 

  32. Graciano, J.E.A., Carreira, A.D., Giudici, R., and Alves, R.M.B., Production of fuels from CO2-rich natural gas using Fischer-Tropsch synthesis coupled to trireforming process, Comput.-Aided Chem. Eng., 2017, vol. 40, pp. 2659–2664. https://doi.org/10.1016/B978-0-444-63965-3.50445-1

    Article  CAS  Google Scholar 

  33. Lopez, J,S., Dagle, V.L., Deshmane, C.A., Kovarik, L., Wegeng, R.S., and Dagle, R.A., Methane and ethane steam reforming over MgAl2O4-supported Rh and Ir catalysts: Catalytic implications for natural gas reforming application, Catalysts, 2019, vol. 9, no. 10, article no. 801, pp. 1–19, https://doi.org/10.3390/catal9100801

  34. Nguyen, T.B.H. and Zondervan, E., Methanol production from captured CO2 using hydrogenation and reforming technologies_ environmental and economic evaluation, J. CO 2 Util., 2019, vol. 34, pp. 1–11. https://doi.org/10.1016/j.jcou.2019.05.033

  35. Norouzi, N. and Talebi, S., Exergy and energy analysis of effective utilization of carbon dioxide in the gas-to-methanol process, Iran. J. Hydrogen Fuel Cell, 2020, vol. 7, no. 1, pp. 13–31. https://doi.org/10.22104/IJHFC.2020.4134.1203

    Article  Google Scholar 

  36. Oliveira dos Santos, R., de Sousa Santos, L., and Prata, D.M., Simulation and optimization of a methanol synthesis process from different biogas sources, J. Cleaner Prod., 2018, vol. 186, pp. 821–830. https://doi.org/10.1016/j.jclepro.2018.03.108

    Article  CAS  Google Scholar 

  37. Bozzano, G., Pirola, C., Italiano, C., Pelosato, R., Vita, A., and Manenti, F., Biogas: A possible new pathway to methanol?, Comput.-Aided Chem. Eng., 2017, vol. 40, pp. 523–528. https://doi.org/10.1016/B978-0-444-63965-3.50089-1

    Article  CAS  Google Scholar 

  38. Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D., and Weireld, G.D., Alternative production of methanol from industrial CO2, Renewable Energy, 2019, vol. 146, pp. 1192–1203. https://doi.org/10.1016/j.renene.2019.07.010

    Article  CAS  Google Scholar 

  39. Park, N., Park, M.-J., Ha, K.-S., Lee, Y.-J., and Jun, K.-W., Modeling and analysis of a methanol synthesis process using a mixed reforming reactor: Perspective on methanol production and CO2 utilization, Fuel, 2014, vol. 129, pp. 163–172. https://doi.org/10.1016/j.fuel.2014.03.068

    Article  CAS  Google Scholar 

  40. Aspen Technology. Aspen HYSYS Software 2018. https://www.aspentech.com/. Cited December 1, 2018.

  41. Luu, M.T., Milani, D., Bahadori, A., and Abbas, A., A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies, J. CO 2 Util., 2015, vol. 12, pp. 62–76. https://doi.org/10.1016/j.jcou.2015.07.001

  42. Biedermann, P., Grube, T. and Höhlein, B., Methanol as an Energy Carrier, Jülich: Forschungszentrum Jülich GmbH, 2006.

    Google Scholar 

  43. Graaf, G.H., Stamhuis, E.J., and Beenackers, A.A.C.M., Kinetics of low-pressure methanol synthesis, Chem. Eng. Sci. 1988, vol. 43, no. 12, pp. 3185–3195. https://doi.org/10.1016/0009-2509(88)85127-3

    Article  CAS  Google Scholar 

  44. Coteron, A. and Hayhurst, A.N., Kinetics of the synthesis of methanol from CO + H2 and CO + CO2 + H2 over copper-based amorphous catalysts, Chem. Eng. Sci., 1994, vol. 49, no. 2, pp. 209–221. https://doi.org/10.1016/0009-2509(94)80039-1

    Article  CAS  Google Scholar 

  45. Do, T.N. and Kim, J., Process development and techno-economic evaluation of methanol production by direct CO2 hydrogenation using solar-thermal energy, J. CO 2 Util., 2019, vol. 33, pp. 461–472. https://doi.org/10.1016/j.jcou.2019.07.003

  46. Fissore, D. and Sokeipirim, D., Simulation and energy consumption analysis of a propane plus recovery plant from natural gas, Fuel Process. Technol., 2011, vol. 92, no. 3, pp. 656–662. https://doi.org/10.1016/j.fuproc.2010.11.024

    Article  CAS  Google Scholar 

  47. Hu, H., Jiang, H., Jing, J., Pu, H., Tan, J., and Leng, N., Optimization and exergy analysis of natural gas liquid recovery processes for the maximization of plant profits, Chem. Eng. Technol., 2018, vol. 42, no. 1, pp. 182–195. https://doi.org/10.1002/ceat.201800238

    Article  CAS  Google Scholar 

  48. Kotas, T.J., The Exergy Method of Thermal Plant Analysis. Amsterdam: Elsevier, 1985. doi 85546-6https://doi.org/10.1016/S0140-7007(97)

    Book  Google Scholar 

  49. Kim, J., Henao, C.A., Johnson, T.A., Dedrick, D.E., Miller, J.E., Stechel, E.B., and Maravelias, C.T., Methanol production from CO2 using solar-thermal energy: Process development and techno-economic analysis, Energy Environ. Sci., 2011, vol. 4, no. 9, pp. 3122–3132. https://doi.org/10.1039/c1ee01311d

    Article  CAS  Google Scholar 

  50. Chauvy, R., Dubois, L., Lybaert, P., Thomas, D., and Weireld, G.D., Production of synthetic natural gas from industrial carbon dioxide, Appl. Energy, 2020, vol. 260, article no. 114249. https://doi.org/10.1016/j.apenergy.2019.114249

    Article  CAS  Google Scholar 

  51. Chen, J., Yang, S., and Qian, Y., A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production, Energy, 2019, vol. 177, pp. 304–318. https://doi.org/10.1016/j.energy.2019.03.161

    Article  CAS  Google Scholar 

  52. Deng, L. and Adams II, T.A., Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization, Energy Convers. Manage., 2019, vol. 204, article no. 112315. https://doi.org/10.1016/j.enconman.2019.112315

    Article  CAS  Google Scholar 

  53. Seider, W.D., Seader, J.D., Lewin, D.R., and Widagdo S. Product and Process Design Principles: Synthesis, Analysis, and Evaluation, New York: Wiley, 2010, ch. 23, pp. 602–641.

    Google Scholar 

  54. Chen, J., Yang, S., and Qian, Y., A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production, Energy, 2019, vol. 177, pp. 304–318. https://doi.org/10.1016/j.energy.2019.03.161

    Article  CAS  Google Scholar 

  55. Yang, S., Yang, Q., Li, H., Jin, X., Li, X., and Qian, Y., An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes, Ind. Eng. Chem. Res. 2012, vol. 51, no. 48, pp. 15763–15777. https://doi.org/10.1021/ie3015654

    Article  CAS  Google Scholar 

  56. Wiesberg,I.L., Brigagão, G.V., de Queiroz, F. Araújo, O., and de Medeiros, J.L., Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol, Renewable and Sustainable Energy Rev., 2019, vol. 112, pp. 720–732.

    Article  CAS  Google Scholar 

  57. Deng, L. and Adams II, T.A., Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization, Energy Convers. Manage., 2019, vol. 204, article no. 112315. https://doi.org/10.1016/j.enconman.2019.112315

    Article  CAS  Google Scholar 

  58. Chen, J., Yang, S., and Qian, Y., A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production, Energy, 2019, vol. 177, pp. 304–318. https://doi.org/10.1016/j.energy.2019.03.161

    Article  CAS  Google Scholar 

  59. Shi, C., Labbaf, B., Mostafavi, E., and Mahinpey, N., Methanol production from water electrolysis and tri-reforming: Process design and technical-economic analysis, J. CO 2 Util., 2020, vol. 38, pp. 241–251. https://doi.org/10.1016/j.jcou.2019.12.022

  60. Ahmed, U., Techno-economic feasibility of methanol synthesis using dual fuel system in a parallel process design configuration with control on green house gas emissions, Int. J. Hydrogen Energy, 2019, vol. 45, no. 11, pp. 6278–6290. https://doi.org/10.1016/j.ijhydene.2019.12.169

    Article  CAS  Google Scholar 

  61. Zhang, Y., Cruz, J., Zhang, S., Lou, H.H., and Benson, T.J., Process simulation and optimization of methanol production coupled to tri-reforming process, Int. J. Hydrogen Energy, 2019, vol. 38, no. 31, pp. 13617–13630. https://doi.org/10.1016/j.ijhydene.2013.08.009

    Article  CAS  Google Scholar 

  62. Szima, S. and Cormos, C.-C., Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation, J. CO 2 Util., 2018, vol. 24, pp. 555–563. https://doi.org/10.1016/j.jcou.2018.02.007

  63. Zhang, D., Duan, R., Li, H., Yang, Q., and Zhou, H., Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology, Energy, 2020, vol. 203, article no. 117876. https://doi.org/10.1016/j.energy.2020.117876

    Article  CAS  Google Scholar 

  64. Odejobi, J.O. and Ayorinde, O.S., Exergy and economic analyses of methanol production process, Niger. J. Technol., 2018, vol. 37, no. 2, pp. 365–373. https://doi.org/10.4314/njt.v37i2.11

    Article  Google Scholar 

  65. Rosen, M.A. and Scott, D.S., Energy and exergy analyses of a production process for methanol from natural gas, J. Hydrogen Energy, 1988, vol. 13, no. 10, pp. 617–623. https://doi.org/10.1016/0360-3199(88)90010-9

    Article  CAS  Google Scholar 

  66. Abdelaziz, O.Y., Hosny, W.M., Gadalla, M.A., Ashour, F.H., Ashour, I.A., and Hulteberg, C.P., Novel process technologies for conversion of carbon dioxide from industrial flue gas streams into methanol, J. CO 2 Util., 2017, vol. 21, pp. 52–63. https://doi.org/10.1016/j.jcou.2017.06.018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Zhou.

Ethics declarations

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M. A Simulation and Thermodynamic Improvement of Methanol Production Process with Economic Analysis: Natural Gas Vapor Reforming and Utilization of Carbon Capture. Theor Found Chem Eng 57, 411–433 (2023). https://doi.org/10.1134/S0040579523030211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523030211

Keywords:

Navigation