Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 14, 2023

Cementite-type Y3Ru

  • Valentin Antoine Chamard , Samir F. Matar , Lars Schumacher , Christian Paulsen , Jutta Kösters , Theresa Block and Rainer Pöttgen EMAIL logo

Abstract

Single crystals of Y3Ru were obtained as a side product during phase analytical studies of yttrium-rich compounds in the system Y–Ru–Zn. The structure of Y3Ru was refined from single-crystal X-ray diffractometer data: Fe3C type, Pnma, a = 732.51(7), b = 925.61(8), c = 633.66(10) pm, wR = 0.0639, 811 F2 values, 23 variables. The ruthenium atoms have coordination number 9 in form of a strongly distorted tricapped trigonal yttrium prism with Ru–Y distances ranging from 275–391 pm. The second substructure concerns empty Y6 octahedra (d(Y–Y) = 344–396 pm). Electronic structure calculations show a net charge transfer from yttrium to ruthenium and underpin the essentially covalent Y–Ru bonding. A phase-pure sample of Y3Ru was synthesized from the elements by arc-melting. Temperature-dependent magnetic susceptibility studies of this sample reveal Pauli paramagnetism (3.6(1) × 10−5 emu mol−1 at T = 300 K).


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Funding source: Universität Münster

Acknowledgments

We thank MSc Tim Pier and Prof. Dr. Thomas Jüstel (FH Münster) for letting us use the scanning electron microscope.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster and Deutsche Forschungsgemeinschaft (INST 211/1034-1).

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Bhadeshia, H. K. D. H. Int. Mater. Rev. 2020, 65, 1–27; https://doi.org/10.1080/09506608.2018.1560984.Search in Google Scholar

2. Westgren, A., Phragmén, G. Z. Phys. Chem. 1922, 102, 1–25; https://doi.org/10.1515/zpch-1922-10202.Search in Google Scholar

3. Westgren, A., Phragmén, G. J. Iron Steel Inst. 1924, 109, 159–174.Search in Google Scholar

4. Lipson, H., Petch, N. J. J. Iron Steel Inst. 1940, 142, 95–103.Search in Google Scholar

5. Fasiska, E. J., Jeffrey, G. A. Acta Crystallogr. 1965, 19, 463–471; https://doi.org/10.1107/s0365110x65003602.Search in Google Scholar

6. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

7. Wood, B. J. Earth Planet. Sci. Lett. 1993, 117, 593–607; https://doi.org/10.1016/0012-821x(93)90105-i.Search in Google Scholar

8. Brett, R. Science 1966, 153, 60–62; https://doi.org/10.1126/science.153.3731.60.Search in Google Scholar PubMed

9. Wood, I. G., Vočadlo, L., Knight, K. S., Dobson, D. P., Marshall, W. G., Price, G. D., Brodholt, J. J. Appl. Crystallogr. 2004, 37, 82–90; https://doi.org/10.1107/s0021889803024695.Search in Google Scholar

10. Prescher, C., Dubrovinsky, L., McCammon, C., Glazyrin, K., Nakajima, Y., Kantor, A., Merlini, M., Hanfland, M. Phys. Rev. B 2012, 85, 140402; https://doi.org/10.1103/physrevb.85.140402.Search in Google Scholar

11. Sanjines Zeballos, R., Chabot, B., Parthé, E. J. Less-Common Met. 1980, 72, P17–P20; https://doi.org/10.1016/0022-5088(80)90264-7.Search in Google Scholar

12. Sharifrazi, P., Mohanty, R. C., Raman, A. Z. Metallkd. 1984, 75, 801–805; https://doi.org/10.1515/ijmr-1984-751011.Search in Google Scholar

13. Gulay, N. L., Reimann, M. K., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2022, 648, 49–57.10.1002/zaac.202100356Search in Google Scholar

14. Johnscher, M., Block, T., Pöttgen, R. Z. Anorg. Allg. Chem. 2015, 641, 369–374; https://doi.org/10.1002/zaac.201400475.Search in Google Scholar

15. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

16. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

17. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s0108768112051361.Search in Google Scholar

18. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

19. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

20. Hohenberg, P., Kohn, W. Phys. Rev. 1964, 136, B864–B871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

21. Kohn, W., Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

22. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

23. Bader, R. F. W. Chem. Rev. 1991, 91, 893–928; https://doi.org/10.1021/cr00005a013.Search in Google Scholar

24. Bader, R. F. W. J. Phys. Chem. A 1998, 102, 7314–7323; https://doi.org/10.1021/jp981794v.Search in Google Scholar

25. Eyert, V. The Augmented Spherical Wave Method. A Comprehensive Treatment, Lecture Notes in Physics; Springer: Heidelberg, 2007.Search in Google Scholar

26. Hoffmann, R. Angew. Chem. Int. Ed. Engl. 1987, 26, 846–878; https://doi.org/10.1002/anie.198708461.Search in Google Scholar

27. OriginPro 2021b (version 9.8.5.201); OriginLab Corp.: Northampton, Massachusetts (USA), 2021.Search in Google Scholar

28. CorelDRAW Graphics Suite 2017 (version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar

29. Bock, O., Müller, U. Acta Crystallogr. 2002, B58, 594–606; https://doi.org/10.1107/s0108768102001490.Search in Google Scholar PubMed

30. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

31. Schappacher, F. M., Pöttgen, R. Monatsh. Chem. 2008, 139, 1137–1142; https://doi.org/10.1007/s00706-008-0908-2.Search in Google Scholar

32. Benndorf, C., Eckert, H., Janka, O. Dalton Trans. 2017, 46, 1083–1092; https://doi.org/10.1039/c6dt04314c.Search in Google Scholar PubMed

33. Hughbanks, T., Corbett, J. D. Inorg. Chem. 1989, 28, 631–635; https://doi.org/10.1021/ic00303a004.Search in Google Scholar

34. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

Received: 2023-07-31
Accepted: 2023-08-28
Published Online: 2023-09-14
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0058/html
Scroll to top button